Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k-Nearest Neighbor Scheme
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
KAUST Grant Number
OSR-2015-CRG4-2582Date
2018-04-30Online Publication Date
2018-04-30Print Publication Date
2018-06-15Permanent link to this record
http://hdl.handle.net/10754/627823
Metadata
Show full item recordAbstract
Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this study, we propose a stereovisionbased method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k-nearest neighbors algorithm (KNN) to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available datasets, the Malaga stereovision urban dataset (MSVUD), the Daimler urban segmentation dataset (DUSD), and Bahnhof dataset. Also, we compared the efficiency of DSA-KNN approach to the deep belief network (DBN)-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.Citation
Dairi A, Harrou F, Sun Y, Senouci M (2018) Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k-Nearest Neighbor Scheme. IEEE Sensors Journal: 1–1. Available: http://dx.doi.org/10.1109/jsen.2018.2831082.Sponsors
This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR- 2015-CRG4-2582. The authors (Abdelkader Dairi and Mohamed Senouci) would like to thank the Computer Science Department, University of Oran 1 Ahmed Ben Bella for the continued support during the research. We are grateful to the five referees, the Associate Editor, and the Editor-in-Chief for their comments.Journal
IEEE Sensors JournalAdditional Links
https://ieeexplore.ieee.org/document/8352801/ae974a485f413a2113503eed53cd6c53
10.1109/jsen.2018.2831082