• Login
    View Item 
    •   Home
    • Academic Divisions
    • Biological and Environmental Science & Engineering (BESE)
    • Biological and Environmental Science and Engineering (BESE) Division
    • View Item
    •   Home
    • Academic Divisions
    • Biological and Environmental Science & Engineering (BESE)
    • Biological and Environmental Science and Engineering (BESE) Division
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Engineering Plant Immunity via CRISPR/Cas13a System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Fatimah_Thesis.pdf
    Size:
    1.658Mb
    Format:
    PDF
    Description:
    Fatimah_Thesis
    Download
    Type
    Thesis
    Authors
    Aljedaani, Fatimah R. cc
    Advisors
    Mahfouz, Magdy M. cc
    Committee members
    Blilou, Ikram cc
    Ghaffour, NorEddine cc
    Program
    Plant Science
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2018-05
    Embargo End Date
    2018-05-06
    Permanent link to this record
    http://hdl.handle.net/10754/627752
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2018-05-06.
    Abstract
    Viral diseases constitute a major threat to the agricultural production and food security throughout the world. Plants cope with the invading viruses by triggering immune responses and small RNA interference (RNAi) systems. In prokaryotes, CRISPR/Cas systems function as an adaptive immune system to provide bacteria with resistance against invading phages and conjugative plasmids. Interestingly, CRISPR/Cas9 system was shown to interfere with eukaryotic DNA viruses and confer resistance against plant DNA viruses. The majority of the plant viruses have RNA genomes. The aim of this study is to test the ability of the newly discovered CRISPR/Cas13a immune system, that targets and cleaves single stranded RNA (ssRNA) in prokaryotes, to provide resistance against RNA viruses in plants. Here, I employ the CRISPR/Cas13a system for molecular interference against Turnip Mosaic Virus (TuMV), a plant RNA virus. The results of this study established the CRISPR/Cas13a as a molecular interference machinery against RNA viruses in plants. Specifically, my data show that the CRISPR/Cas13a machinery is able to interfere with and degrade the TuMV (TuMV-GFP) RNA genome. In conclusion, these data indicate that the CRISPR/Cas13 systems can be employed for engineering interference and durable resistance against RNA viruses in diverse plant species.
    Citation
    Aljedaani, F. R. (2018). Engineering Plant Immunity via CRISPR/Cas13a System. KAUST Research Repository. https://doi.org/10.25781/KAUST-W4F75
    DOI
    10.25781/KAUST-W4F75
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-W4F75
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; MS Theses; Plant Science Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.