Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems
Name:
Katuri et al_Manuscript_adma.201705955R1_KAUST Repository.pdf
Size:
1.582Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Katuri, KrishnaKalathil, Shafeer
Ragab, Alaa I.
Bian, Bin

AlQahtani, Manal Faisal
Pant, Deepak
Saikaly, Pascal

KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEnvironmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
KAUST Grant Number
FCC/1/1971-05-01URF/1/2985-01-01
Date
2018-04-30Online Publication Date
2018-04-30Print Publication Date
2018-06Permanent link to this record
http://hdl.handle.net/10754/627745
Metadata
Show full item recordAbstract
Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.Citation
Katuri KP, Kalathil S, Ragab A, Bian B, Alqahtani MF, et al. (2018) Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems. Advanced Materials: 1707072. Available: http://dx.doi.org/10.1002/adma.201707072.Sponsors
K.P.K. and S.K. contributed equally to this work. This work was supported by the Center Competitive Funding Program (Grant No. FCC/1/1971-05-01) and the Competitive Research Grant (URF/1/2985-01-01) from King Abdullah University of Science and Technology (KAUST). Figures were created by Xavier Pita (Figures 2, 7, and 12), Ivan Gromicho (Figures 5 and 8, and ToC image), and Heno Hwang (Figure 4 and ToC image), scientific illustrators at KAUST. The authors thank Srikanth Pedireddy, a Postdoctoral Fellow in the WDRC at KAUST, for modifying Figure 3 and generating Figures 1 and 6 in this manuscript.Publisher
WileyJournal
Advanced MaterialsPubMed ID
29707854Additional Links
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201707072ae974a485f413a2113503eed53cd6c53
10.1002/adma.201707072
Scopus Count
Related articles
- A Microfiltration Polymer-Based Hollow-Fiber Cathode as a Promising Advanced Material for Simultaneous Recovery of Energy and Water.
- Authors: Katuri KP, Bettahalli NM, Wang X, Matar G, Chisca S, Nunes SP, Saikaly PE
- Issue date: 2016 Nov
- Role of microbial electrosynthesis system in CO(2) capture and conversion: a recent advancement toward cathode development.
- Authors: Ibrahim I, Salehmin MNI, Balachandran K, Hil Me MF, Loh KS, Abu Bakar MH, Jong BC, Lim SS
- Issue date: 2023
- Extracellular Electrons Powered Microbial CO(2) Upgrading: Microbial Electrosynthesis and Artificial Photosynthesis.
- Authors: Zou L, Zhu F, Chang FX, Yong YC
- Issue date: 2022
- Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata.
- Authors: Bajracharya S, Krige A, Matsakas L, Rova U, Christakopoulos P
- Issue date: 2022 Jan
- A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions.
- Authors: Katuri KP, Werner CM, Jimenez-Sandoval RJ, Chen W, Jeon S, Logan BE, Lai Z, Amy GL, Saikaly PE
- Issue date: 2014 Nov 4