• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MFA_Thesis-Rev04.pdf
    Size:
    1.119Mb
    Format:
    PDF
    Description:
    Mohd-Thesis
    Download
    Type
    Dissertation
    Authors
    Che Ruslan, Mohd Fuad Anwari cc
    Advisors
    Sun, Shuyu cc
    Committee members
    Hoteit, Hussein cc
    Lai, Zhiping cc
    Program
    Earth Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2018-03
    Permanent link to this record
    http://hdl.handle.net/10754/627680
    
    Metadata
    Show full item record
    Abstract
    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data. In this study, the thermodynamic properties were computed using Cubic Plus Association (CPA) equation of state, and the electrolyte contribution was accounted for by adding Debye-Huckel activity coefficient in the thermodynamic properties computation.  
    Citation
    Che Ruslan, M. F. A. (2018). Modelling CO2-Brine Interfacial Tension using Density Gradient Theory. KAUST Research Repository. https://doi.org/10.25781/KAUST-CUD23
    DOI
    10.25781/KAUST-CUD23
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-CUD23
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.