Show simple item record

dc.contributor.authorMuhammed, Madathumpady Abubaker Habeeb
dc.contributor.authorLamers, Marlene
dc.contributor.authorBaumann, Verena
dc.contributor.authorDey, Priyanka
dc.contributor.authorBlanch, Adam J.
dc.contributor.authorPolishchuk, Iryna
dc.contributor.authorKong, Xiang-Tian
dc.contributor.authorLevy, Davide
dc.contributor.authorUrban, Alexander S.
dc.contributor.authorGovorov, Alexander O.
dc.contributor.authorPokroy, Boaz
dc.contributor.authorRodríguez-Fernández, Jessica
dc.contributor.authorFeldmann, Jochen
dc.date.accessioned2018-04-24T07:48:29Z
dc.date.available2018-04-24T07:48:29Z
dc.date.issued2018-02-20
dc.identifier.citationMuhammed MAH, Lamers M, Baumann V, Dey P, Blanch AJ, et al. (2018) Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals. The Journal of Physical Chemistry C 122: 6348–6356. Available: http://dx.doi.org/10.1021/acs.jpcc.8b01567.
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.doi10.1021/acs.jpcc.8b01567
dc.identifier.urihttp://hdl.handle.net/10754/627636
dc.description.abstractElucidating the underlying principles behind band gap engineering is paramount for the successful implementation of semiconductors in photonic and optoelectronic devices. Recently it has been shown that the band gap of a wide and direct band gap semiconductor, such as ZnO, can be modified upon cocrystallization with amino acids, with the role of the biomolecules remaining unclear. Here, by probing and modeling the light-emitting properties of ZnO-amino acid cocrystals, we identify the amino acids' role on this band gap modulation and demonstrate their effective chirality transfer to the interband excitations in ZnO. Our 3D quantum model suggests that the strong band edge emission blue-shift in the cocrystals can be explained by a quasi-periodic distribution of amino acid potential barriers within the ZnO crystal lattice. Overall, our findings indicate that biomolecule cocrystallization can be used as a truly bio-inspired means to induce chiral quantum confinement effects in quasi-bulk semiconductors.
dc.description.sponsorshipUniversity of Electronic Science and Technology of China
dc.description.sponsorshipBayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
dc.description.sponsorshipFP7 Ideas: European Research Council[336077]
dc.description.sponsorshipVolkswagen Foundation
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b01567
dc.titleStrong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.identifier.journalThe Journal of Physical Chemistry C
dc.contributor.institutionDepartment of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
dc.contributor.institutionDepartment of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion — Israel Institute of Technology, 32000 Haifa, Israel
dc.contributor.institutionInstitute of Fundamental and Frontier Sciences and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
dc.contributor.institutionDepartment of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
kaust.personMuhammed, Madathumpady Abubaker Habeeb


This item appears in the following Collection(s)

Show simple item record