Show simple item record

dc.contributor.authorWu, Zedong
dc.contributor.authorLiu, Hongwei
dc.contributor.authorAlkhalifah, Tariq Ali
dc.date.accessioned2018-04-19T10:45:31Z
dc.date.available2018-04-19T10:45:31Z
dc.date.issued2018-04-14
dc.identifier.citationWu Z, Liu H, Alkhalifah T (2018) Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method. Geophysical Journal International. Available: http://dx.doi.org/10.1093/gji/ggy151.
dc.identifier.issn0956-540X
dc.identifier.issn1365-246X
dc.identifier.doi10.1093/gji/ggy151
dc.identifier.urihttp://hdl.handle.net/10754/627567
dc.description.abstractThe acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artifacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artifacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constrain of ε ≥ δ. Numerical tests demonstrate the effectiveness of the approach.
dc.description.sponsorshipWe thank KAUST for its support and the SWAG group for the collaborative environment. We also thank the associate editor Jean Virieux, Hejun Zhu, and another anonymous reviewer for their fruitful suggestions and comments. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. We also thank Michael Jervis for proofreading the article and BP for providing the BP TTI benchmark model.
dc.publisherOxford University Press (OUP)
dc.relation.urlhttps://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggy151/4970770
dc.rightsThis is a pre-copyedited, author-produced PDF of an article accepted for publication in Geophysical Journal International following peer review. The version of record is available online at: https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggy151/4970770.
dc.subjectVTI
dc.subjectAcoustic
dc.titlePure Quasi-P-wave calculation in transversely isotropic media using a hybrid method
dc.typeArticle
dc.contributor.departmentEarth Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSeismic Wave Analysis Group
dc.identifier.journalGeophysical Journal International
dc.eprint.versionPost-print
dc.contributor.institutionEXPEC Advanced Research Center, Saudi Aramco, Saudi Arabia
kaust.personWu, Zedong
kaust.personAlkhalifah, Tariq Ali
refterms.dateFOA2018-06-14T05:54:58Z
dc.date.published-online2018-04-14
dc.date.published-print2018-07-01


Files in this item

Thumbnail
Name:
ggy151.pdf
Size:
2.717Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record