• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    08332956.pdf
    Size:
    2.398Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Su, Zhen
    Klionovski, Kirill cc
    Bilal, Rana Muhammad
    Shamim, Atif cc
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Investment Fund
    Date
    2018-04-06
    Online Publication Date
    2018-04-06
    Print Publication Date
    2018
    Permanent link to this record
    http://hdl.handle.net/10754/627558
    
    Metadata
    Show full item record
    Abstract
    Internet of things (IoT) applications need wireless connectivity on devices with very small footprints, and in RF obscure environments. The antenna for such applications must work on multiple GSM bands (preferred choice for network connectivity), provide near isotropic radiation pattern to maintain orientation insensitive communication, be small in size so that it can be integrated with futuristic miniaturized IoT devices, and be low in cost to be implemented on billions of devices. This paper presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost. The proposed antenna consists of a meander line antenna that is folded on the faces of a 3D package with two variations, 0.375λ length for narrowband version and 0.67λ length for the wideband version. Theoretical conditions to achieve near isotropic radiation pattern with bent wire antennas on a 3D surface have been derived. The antenna has been optimized to operate with embedded electronics and a large metallic battery. The antenna provides 8.9% and 34.4% bandwidths, at 900 and 1800 MHz respectively with decent near isotropic radiation behavior.
    Citation
    Su Z, Klionovski K, Bilal RM, Shamim A (2018) A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern. IEEE Transactions on Antennas and Propagation: 1–1. Available: http://dx.doi.org/10.1109/TAP.2018.2823729.
    Sponsors
    We thank Shuai Yang and Qingle Zhang, for assistance with graphics edition that improved the manuscript.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Transactions on Antennas and Propagation
    DOI
    10.1109/TAP.2018.2823729
    Additional Links
    https://ieeexplore.ieee.org/document/8332956/
    ae974a485f413a2113503eed53cd6c53
    10.1109/TAP.2018.2823729
    Scopus Count
    Collections
    Articles; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Guest Editorial Antenna-in-Package, Antenna-on-Chip, Antenna-IC Interface: Joint Design and Cointegration

      Hong, Wonbin; Maaskant, Rob; Liu, Duixian; Wang, Hua; Shamim, Atif; Smolders, Bart; Manteuffel, DIrk; Zhang, Yueping (IEEE Antennas and Wireless Propagation Letters, Institute of Electrical and Electronics Engineers (IEEE), 2019-11-05) [Article]
      The twenty peer-reviewed letters in this special section examine the design and cointegration of antenna-in-package (AiP), antenna-on-chip (AoC), and antenna ICs (AIC). The letters are categorized in the four distinctive categories: 1) Fabrication technologies (four); 2) Measurement strategies; 3) Applications; and 4) New design and integration strategies. Fruition of major thrusts such as 5G/6G, high-resolution radar and imaging, autonomous driving, and space technology are highly intertwined with the advance of applied electromagnetics. Miniaturization and seamless integration of microwave components and radio systems can enable superior performance, form factor, and cost efficiencies leading to enhanced proliferation of such applications. Historically, radio frequency front ends, antennas, and microwave components have separately evolved using distinct fabrication and measurement technologies.
    • Thumbnail

      Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

      Hussain, Rifaqat; Sharawi, Mohammad S. (IET Microwaves, Antennas & Propagation, Institution of Engineering and Technology (IET), 2015-06-18) [Article]
      © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm$^{2}$. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.
    • Thumbnail

      Miniaturized, low power, wireless transmitter and receiver with on-chip antenna, and wireless coupling of on-chip and off-chip antenna

      Shamim, Atif; Arsalan, Muhammad; Roy, Langis (2010-04-22) [Patent]
      A miniaturized, low power RF transmitter with a dual mode active on-chip antenna/inductor is disclosed in which antenna also serves as the oscillator inductor. Also disclosed is a miniaturized low power RF receiver with an on-chip antenna; and a RF transmitter system wherein an on-chip antenna is wirelessly coupled to an off chip patch antenna are disclosed. Advantageously, the TX chip is housed in a low loss, e.g. Low Temperature Co-fired Ceramic (LTCC) package with a patch antenna to provide a System-on-Package implementation comprising electromagnetic coupling between a RF TX chip comprising an integrated on-chip antenna and a package antenna. The on-chip antenna feeds the LTCC patch antenna through aperture coupling, thus negating the need for RF buffer amplifiers, matching elements, baluns, bond wires and package transmission lines, and significantly increases the gain and range of the module with respect to the on-chip antenna alone, without deterioration of the circuit performance and power consumption. Exemplary embodiments are disclosed which may be fabricated using standard CMOS technology, for operation in the 5 GHz U-NII band for applications such as miniaturized, low cost, low power wireless devices and sensor systems.
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.