Type
ArticleKAUST Department
Material Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Spintronics Theory Group
Date
2018-12-19Preprint Posting Date
2018-04-06Permanent link to this record
http://hdl.handle.net/10754/627495
Metadata
Show full item recordAbstract
It is well known that moving magnetic textures may pump spin and charge currents along the direction of motion, a phenomenon called electronic pumping. Here, the electronic pumping arising from the steady motion of ferromagnetic skyrmions is investigated by solving the time evolution of the Schrödinger equation implemented on a tight-binding model with the statistical physics of the many-body problem. In contrast with rigid one-dimensional magnetic textures, we show that steadily moving magnetic skyrmions are able to pump large dc currents. This ability arises from their nontrivial magnetic topology, i.e., the coexistence of the spin-motive force and the topological Hall effect. Based on an adiabatic scattering theory, we compute the pumped current and demonstrate that it scales with the reflection coefficient of the conduction electrons against the skyrmion. In other words, in the semiclassical limit, reducing the size of the skyrmion and the width of the nanowire enhances this effect, making it scalable. We propose that such a phenomenon can be exploited in the context of racetrack devices, where the electronic pumping enhances the collective motion of the train of skyrmions.Citation
Abbout A, Weston J, Waintal X, Manchon A (2018) Cooperative Charge Pumping and Enhanced Skyrmion Mobility. Physical Review Letters 121. Available: http://dx.doi.org/10.1103/PhysRevLett.121.257203.Sponsors
A. A. and A. M. acknowledge financial support from the King Abdullah University of Science and Technology (KAUST). We acknowledge computing time on the supercomputers SHAHEEN at KAUST Supercomputing Centre and the team assistance. X. W. acknowledges financial support from ANR Fully Quantum. A. A. thanks A. Salimath, P. B. Ndiaye, S. Ghosh, and C. A. Akosa for useful discussions.Publisher
American Physical Society (APS)Journal
Physical Review LettersarXiv
1804.02460Additional Links
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.257203ae974a485f413a2113503eed53cd6c53
10.1103/PhysRevLett.121.257203