• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Houborg, Rasmus cc
    McCabe, Matthew cc
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Environmental Science and Engineering Program
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2018-03-19
    Online Publication Date
    2018-03-19
    Print Publication Date
    2018-05
    Permanent link to this record
    http://hdl.handle.net/10754/627437
    
    Metadata
    Show full item record
    Abstract
    Satellite sensing in the visible to near-infrared (VNIR) domain has been the backbone of land surface monitoring and characterization for more than four decades. However, a limitation of conventional single-sensor satellite missions is their limited capacity to observe land surface dynamics at the very high spatial and temporal resolutions demanded by a wide range of applications. One solution to this spatio-temporal divide is an observation strategy based on the CubeSat standard, which facilitates constellations of small, inexpensive satellites. Repeatable near-daily image capture in RGB and near-infrared (NIR) bands at 3–4 m resolution has recently become available via a constellation of >130 CubeSats operated commercially by Planet. While the observing capacity afforded by this system is unprecedented, the relatively low radiometric quality and cross-sensor inconsistencies represent key challenges in the realization of their full potential as a game changer in Earth observation. To address this issue, we developed a Cubesat Enabled Spatio-Temporal Enhancement Method (CESTEM) that uses a multi-scale machine-learning technique to correct for radiometric inconsistencies between CubeSat acquisitions. The CESTEM produces Landsat 8 consistent atmospherically corrected surface reflectances in blue, green, red, and NIR bands, but at the spatial scale and temporal frequency of the CubeSat observations. An application of CESTEM over an agricultural dryland system in Saudi Arabia demonstrated CubeSat-based reproduction of Landsat 8 consistent VNIR data with an overall relative mean absolute deviation of 1.6% or better, even when the Landsat 8 and CubeSat acquisitions were temporally displaced by >32 days. The consistently high retrieval accuracies were achieved using a multi-scale target sampling scheme that draws Landsat 8 reference data from a series of scenes by using MODIS-consistent surface reflectance time series to quantify relative changes in Landsat-scale reflectances over given Landsat-CubeSat acquisition timespans. With the observing potential of Planet's CubeSats approaching daily nadir-pointing land surface imaging of the entire Earth, CESTEM offers the capacity to produce daily Landsat 8 consistent VNIR imagery with a factor of 10 increase in spatial resolution and with the radiometric quality of actual Landsat 8 observations. Realization of this unprecedented Earth observing capacity has far reaching implications for the monitoring and characterization of terrestrial systems at the precision scale.
    Citation
    Houborg R, McCabe MF (2018) A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sensing of Environment 209: 211–226. Available: http://dx.doi.org/10.1016/j.rse.2018.02.067.
    Sponsors
    Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST). We acknowledge Planet's Ambassadors program for providing access to their imagery archive as well as the outreach efforts of Planet's Dr Joseph Mascaro. We greatly appreciate the logistical, equipment and scientific support offered to our team by Mr Jack King, Mr Alan King and employees of the Tawdeehiya Farm in Al Kharj, Saudi Arabia, without whom this research would not have been possible.
    Publisher
    Elsevier BV
    Journal
    Remote Sensing of Environment
    DOI
    10.1016/j.rse.2018.02.067
    Additional Links
    https://www.sciencedirect.com/science/article/pii/S0034425718300786
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.rse.2018.02.067
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.