• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    HernandezPerez_etal_CaF_2018_KARFS.pdf
    Size:
    1.398Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Hernandez Perez, Francisco
    Mukhadiyev, Nurzhan cc
    Xu, Xiao
    Sow, Aliou
    Lee, Bok Jik
    Sankaran, Ramanan
    Im, Hong G. cc
    KAUST Department
    Clean Combustion Research Center
    Computational Reacting Flow Laboratory (CRFL)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2018-03-29
    Online Publication Date
    2018-03-29
    Print Publication Date
    2018-09
    Permanent link to this record
    http://hdl.handle.net/10754/627433
    
    Metadata
    Show full item record
    Abstract
    A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for “X” for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.
    Citation
    Hernández Pérez FE, Mukhadiyev N, Xu X, Sow A, Lee BJ, et al. (2018) Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration. Computers & Fluids. Available: http://dx.doi.org/10.1016/j.compfluid.2018.03.074.
    Sponsors
    The research work was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of the computer clusters at KAUST Supercomputing Laboratory (KSL), and resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Bok Jik Lee was partly supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2017R1A2B4003327). The authors also thank Dr. Hatem Ltaief at KSL for his assistance with the MAGMA library.
    Publisher
    Elsevier BV
    Journal
    Computers & Fluids
    DOI
    10.1016/j.compfluid.2018.03.074
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0045793018301786
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.compfluid.2018.03.074
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.