Show simple item record

dc.contributor.authorKobayashi, Eiji
dc.contributor.authorBoccard, Mathieu
dc.contributor.authorJeangros, Quentin
dc.contributor.authorRodkey, Nathan
dc.contributor.authorVresilovic, Daniel
dc.contributor.authorHessler-Wyser, Aïcha
dc.contributor.authorDöbeli, Max
dc.contributor.authorFranta, Daniel
dc.contributor.authorDe Wolf, Stefaan
dc.contributor.authorMorales-Masis, Monica
dc.contributor.authorBallif, Christophe
dc.date.accessioned2018-03-15T11:35:52Z
dc.date.available2018-03-15T11:35:52Z
dc.date.issued2018-03-02
dc.identifier.citationKobayashi E, Boccard M, Jeangros Q, Rodkey N, Vresilovic D, et al. (2018) Amorphous gallium oxide grown by low-temperature PECVD. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 36: 021518. Available: http://dx.doi.org/10.1116/1.5018800.
dc.identifier.issn0734-2101
dc.identifier.issn1520-8559
dc.identifier.doi10.1116/1.5018800
dc.identifier.urihttp://hdl.handle.net/10754/627318
dc.description.abstractOwing to the wide application of metal oxides in energy conversion devices, the fabrication of these oxides using conventional, damage-free, and upscalable techniques is of critical importance in the optoelectronics community. Here, the authors demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaO:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband transparency, wide band gap (3.5-4 eV), and low refractive index (1.6 at 500 nm). The authors link this low refractive index to the presence of nanoscale voids enclosing H, as indicated by electron energy-loss spectroscopy. This work opens the path for further metal-oxide developments by low-temperature, scalable and damage-free PECVD processes.
dc.description.sponsorshipThis work received financial support from the Swiss Federal Office of Energy, EU FP7 program (CHETAAH Project, Contract No. 609788), CCEM CONNECT PV, Swiss National Science Foundation via the NRP70 Energy Turnaround project PV2050 and the DisCO (No. CRSII2-154474) projects. The authors thank CIME at EPFL for microscopes access. Daniel Franta acknowledges the financial support from project LO1411 (NPU I) funded by the Ministry of Education Youth and Sports of Czech Republic.
dc.publisherAmerican Vacuum Society
dc.relation.urlhttps://avs.scitation.org/doi/10.1116/1.5018800
dc.rightsArchived with thanks to Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
dc.titleAmorphous gallium oxide grown by low-temperature PECVD
dc.typeArticle
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentMaterials Science and Engineering Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.identifier.journalJournal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Materials Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
dc.contributor.institutionChoshu Industry Co., Ltd., 3740, Shin-yamanoi, Sanyo Onoda, Yamaguchi 757-8511, Japan
dc.contributor.institutionÉcole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue de la Maladière 71b, CH-2002 Neuchâtel, Switzerland
dc.contributor.institutionDepartment of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
dc.contributor.institutionETH Zurich, Ion Beam Physics, Otto-Stern-Weg 5, Zurich 8093, Switzerland
dc.contributor.institutionDepartment of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská, 2, Brno 61137, Czechia
kaust.personDe Wolf, Stefaan


Files in this item

Thumbnail
Name:
1.5018800.pdf
Size:
3.774Mb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record