Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks
Name:
20180122_Proofs_Submission_Revision_Nanoscale.pdf
Size:
5.065Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Cao, AnpingShan, Meixia
Paltrinieri, Laura
Evers, Wiel H.
Chu, Liangyong
Poltorak, Lukasz
Klootwijk, Johan H.
Seoane, Beatriz
Gascon, Jorge

Sudhölter, Ernst J. R.
de Smet, Louis C. P. M.
KAUST Department
Chemical Engineering ProgramKAUST Catalysis Center (KCC)
Physical Science and Engineering (PSE) Division
Date
2018Permanent link to this record
http://hdl.handle.net/10754/627289
Metadata
Show full item recordAbstract
Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.Citation
Cao A, Shan M, Paltrinieri L, Evers WH, Chu L, et al. (2018) Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks. Nanoscale. Available: http://dx.doi.org/10.1039/c7nr07745a.Sponsors
The authors thank NanoNextNL, a micro and nanotechnology consortium of the Government of The Netherlands and 130 partners, for their financial support. Laura P. and L. C. P. M. d. S. thank Wetsus – European centre of excellence for sustainable water technology for funding. M. S. and L. C. thank the China Scholarship Council (CSC) for financial support. L. C. P. M. d. S. acknowledges the European Research Council (ERC) for a Consolidator Grant, which is part of the European Union's Horizon 2020 research and innovation programme (grant agreement no 682444). We also thank Mr Duco Bosma and Mr Bart Boshuizen from TU Delft for technical and LabVIEW support and Mr Tiny Verhoeven (TU Eindhoven) for performing some of the XPS measurements.Publisher
Royal Society of Chemistry (RSC)Journal
NanoscalePubMed ID
29520398Additional Links
http://pubs.rsc.org/en/content/articlehtml/2018/nr/c7nr07745aae974a485f413a2113503eed53cd6c53
10.1039/c7nr07745a
Scopus Count
Related articles
- Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor.
- Authors: Li BR, Chen CW, Yang WL, Lin TY, Pan CY, Chen YT
- Issue date: 2013 Jul 15
- Joule-Heated and Suspended Silicon Nanowire Based Sensor for Low-Power and Stable Hydrogen Detection.
- Authors: Yun J, Ahn JH, Moon DI, Choi YK, Park I
- Issue date: 2019 Nov 13
- Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
- Authors: Lu N, Gao A, Dai P, Li T, Wang Y, Gao X, Song S, Fan C, Wang Y
- Issue date: 2013 Oct
- High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.
- Authors: Wang J, Wang H, Prakoso AB, Togonal AS, Hong L, Jiang C, Rusli
- Issue date: 2015 Mar 14
- Metal-Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives.
- Authors: Cao A, Zhu W, Shang J, Klootwijk JH, Sudhölter EJ, Huskens J, de Smet LC
- Issue date: 2017 Jan 11