Show simple item record

dc.contributor.authorEssig, Stephanie
dc.contributor.authorDréon, Julie
dc.contributor.authorRucavado, Esteban
dc.contributor.authorMews, Mathias
dc.contributor.authorKoida, Takashi
dc.contributor.authorBoccard, Mathieu
dc.contributor.authorWerner, Jérémie
dc.contributor.authorGeissbühler, Jonas
dc.contributor.authorLöper, Philipp
dc.contributor.authorMorales-Masis, Monica
dc.contributor.authorKorte, Lars
dc.contributor.authorDe Wolf, Stefaan
dc.contributor.authorBalllif, Christophe
dc.date.accessioned2018-03-11T06:54:15Z
dc.date.available2018-03-11T06:54:15Z
dc.date.issued2018-02-21
dc.identifier.citationEssig S, Dréon J, Rucavado E, Mews M, Koida T, et al. (2018) Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics. Solar RRL: 1700227. Available: http://dx.doi.org/10.1002/solr.201700227.
dc.identifier.issn2367-198X
dc.identifier.doi10.1002/solr.201700227
dc.identifier.urihttp://hdl.handle.net/10754/627284
dc.description.abstractMolybdenum oxide (MoOX) combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient hole-selective front contact stack for crystalline silicon solar cells. However, hole extraction from the Si wafer and transport through this stack degrades upon annealing at 190 °C, which is needed to cure the screen-printed Ag metallization applied to typical Si solar cells. Here, we show that effusion of hydrogen from the adjacent layers is a likely cause for this degradation, highlighting the need for hydrogen-lean passivation layers when using such metal-oxide-based carrier-selective contacts. Pre-MoOX-deposition annealing of the passivating a-Si:H layer is shown to be a straightforward approach to manufacturing MoOX-based devices with high fill factors using screen-printed metallization cured at 190 °C.
dc.description.sponsorshipThe authors would like to thank Raphaël Monnard and Guillaume Charitat from EPFL and Nicolas Badel, Silvia Martin de Nicolas and Fabien Debrot from CSEM for work performed in the context of this publication. Furthermore, we thank Davide Sacchetto and Sylvain Nicolay from CSEM, and Andres Cuevas from ANU for discussions, Virginia Unkefer from KAUST for manuscript editing. S. Essig held a Marie Skłodowska-Curie Individual Fellowship from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No: 706744, action acronym: COLIBRI). Part of this work was funded by the European Union's Horizon 2020 research and innovation programme under Grant Agreements no. 727529 (project DISC), and by the Swiss National Science Foundation via the NRP70 “Energy Turnaround” project “PV2050.”
dc.publisherWiley
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/solr.201700227/full
dc.relation.urlhttp://www.helmholtz-berlin.de/pubbin/oai_publication?VT=1&ID=96014
dc.rightsThis is the peer reviewed version of the following article: Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics, which has been published in final form at http://doi.org/10.1002/solr.201700227. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
dc.rightsThis file is an open access version redistributed from: http://www.helmholtz-berlin.de/pubbin/oai_publication?VT=1&ID=96014
dc.subjectheterojunction
dc.subjecthydrogen
dc.subjectmetal oxide
dc.subjectsilicon solar cells
dc.titleToward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalSolar RRL
dc.rights.embargodate2019-02-19
dc.eprint.versionPost-print
dc.contributor.institutionÉcole Polytechnique Fédérale de Lausanne (EPFL); Institute of Micro engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory (PV-Lab); Rue de la Maladière 71b 2002 Neuchâtel Switzerland
dc.contributor.institutionZentrum Berlin for Materials and Energy (HZB); Institute of Silicon Photovoltaics; Kekuléstraße 5 12489 Berlin Germany
dc.contributor.institutionNational Institute of Advanced Industrial Science and Technology (AIST); 1-1-1 Umezono Tsukuba 305-8568 Japan
dc.contributor.institutionCSEM PV-center; Rue Jaquet-Droz 1 2002 Neuchâtel Switzerland
kaust.personDe Wolf, Stefaan
refterms.dateFOA2020-04-08T07:26:24Z
dc.date.published-online2018-02-19
dc.date.published-print2018-04


Files in this item

Thumbnail
Name:
oai_publication.pdf
Size:
579.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record