Type
Conference PaperAuthors
Bibi, Adel
Ghanem, Bernard

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Visual Computing Center (VCC)
Date
2017-12-25Online Publication Date
2017-12-25Print Publication Date
2017-10Permanent link to this record
http://hdl.handle.net/10754/627257
Metadata
Show full item recordAbstract
Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images independently. However, learning multidimensional dictionaries and sparse codes for the reconstruction of multi-dimensional data is very important, as it examines correlations among all the data jointly. This provides more capacity for the learned dictionaries to better reconstruct data. In this paper, we propose a generic and novel formulation for the CSC problem that can handle an arbitrary order tensor of data. Backed with experimental results, our proposed formulation can not only tackle applications that are not possible with standard CSC solvers, including colored video reconstruction (5D- tensors), but it also performs favorably in reconstruction with much fewer parameters as compared to naive extensions of standard CSC to multiple features/channels.Citation
Bibi A, Ghanem B (2017) High Order Tensor Formulation for Convolutional Sparse Coding. 2017 IEEE International Conference on Computer Vision (ICCV). Available: http://dx.doi.org/10.1109/ICCV.2017.197.Sponsors
This work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research.Conference/Event name
16th IEEE International Conference on Computer Vision, ICCV 2017Additional Links
http://ieeexplore.ieee.org/document/8237459/ae974a485f413a2113503eed53cd6c53
10.1109/ICCV.2017.197