An FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded with Conductors
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2018-02-05Online Publication Date
2018-02-05Print Publication Date
2018Permanent link to this record
http://hdl.handle.net/10754/627220
Metadata
Show full item recordAbstract
A fast and memory efficient 3D full wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method - fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts.Citation
Yucel AC, Sheng W, Zhou C, Liu YZ, Bagci H, et al. (2018) An FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded with Conductors. IEEE Journal on Multiscale and Multiphysics Computational Techniques: 1–1. Available: http://dx.doi.org/10.1109/jmmct.2018.2802420.Sponsors
This work was supported in part by Alpha Foundation under Grant AFC215-54.Additional Links
http://ieeexplore.ieee.org/document/8281076/ae974a485f413a2113503eed53cd6c53
10.1109/jmmct.2018.2802420