Scale and shape mixtures of multivariate skew-normal distributions
Name:
1-s2.0-S0047259X17303937-main.pdf
Size:
721.3Kb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
Date
2018-02-26Online Publication Date
2018-02-26Print Publication Date
2018-07Permanent link to this record
http://hdl.handle.net/10754/627215
Metadata
Show full item recordAbstract
We introduce a broad and flexible class of multivariate distributions obtained by both scale and shape mixtures of multivariate skew-normal distributions. We present the probabilistic properties of this family of distributions in detail and lay down the theoretical foundations for subsequent inference with this model. In particular, we study linear transformations, marginal distributions, selection representations, stochastic representations and hierarchical representations. We also describe an EM-type algorithm for maximum likelihood estimation of the parameters of the model and demonstrate its implementation on a wind dataset. Our family of multivariate distributions unifies and extends many existing models of the literature that can be seen as submodels of our proposal.Citation
Arellano-Valle RB, Ferreira CS, Genton MG (2018) Scale and shape mixtures of multivariate skew-normal distributions. Journal of Multivariate Analysis. Available: http://dx.doi.org/10.1016/j.jmva.2018.02.007.Sponsors
This research was supported by Fondecyt (Chile)1120121 and 1150325, and by the King Abdullah University of Science and Technology (KAUST) . We thank the Editor, Associate Editor and four anonymous reviewers for comments that improved the paper. We also thank Prof. Adelchi Azzalini for suggesting Proposition 1 during a seminar presentation of this work at the University of Padova and Prof. Mauricio Castro for some initial discussions on the topic of this paper.Publisher
Elsevier BVJournal
Journal of Multivariate AnalysisAdditional Links
http://www.sciencedirect.com/science/article/pii/S0047259X17303937ae974a485f413a2113503eed53cd6c53
10.1016/j.jmva.2018.02.007
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Characteristic functions of scale mixtures of multivariate skew-normal distributionsKim, Hyoung-Moon; Genton, Marc G. (Journal of Multivariate Analysis, Elsevier BV, 2011-08) [Article]We obtain the characteristic function of scale mixtures of skew-normal distributions both in the univariate and multivariate cases. The derivation uses the simple stochastic relationship between skew-normal distributions and scale mixtures of skew-normal distributions. In particular, we describe the characteristic function of skew-normal, skew-t, and other related distributions. © 2011 Elsevier Inc.
-
Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distributionKrupskii, Pavel; Joe, Harry; Lee, David; Genton, Marc G. (Journal of Multivariate Analysis, Elsevier BV, 2017-11-02) [Article]The multivariate Hüsler–Reiß copula is obtained as a direct extreme-value limit from the convolution of a multivariate normal random vector and an exponential random variable multiplied by a vector of constants. It is shown how the set of Hüsler–Reiß parameters can be mapped to the parameters of this convolution model. Assuming there are no singular components in the Hüsler–Reiß copula, the convolution model leads to exact and approximate simulation methods. An application of simulation is to check if the Hüsler–Reiß copula with different parsimonious dependence structures provides adequate fit to some data consisting of multivariate extremes.
-
Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensorAshry, Islam; Mao, Yuan; Alias, Mohd Sharizal; Ng, Tien Khee; Hveding, Frode; Arsalan, Muhammad; Ooi, Boon S. (Applied Optics, The Optical Society, 2019-06-14) [Article]We experimentally introduce a normalized differential method to enhance the time domain signal-to-noise ratio (SNR) of an optical fiber distributed acoustic sensor (DAS). The reported method is calibrated against the typical differential method in noisy DAS systems, including those utilizing a relatively wide linewidth laser or few-mode fiber. In these two systems, the normalized differential method respectively identifies the position information of various vibration events with 1.7 dB and 0.53 dB SNR improvement. We further demonstrate the ability to locate positions along a fiber that are subjected to vibrations of frequencies higher than the theoretical maximum, but without determining these frequencies.