Show simple item record

dc.contributor.authorMorvan, Jean-Marie
dc.date.accessioned2018-02-27T09:00:12Z
dc.date.available2018-02-27T09:00:12Z
dc.date.issued2018-02-16
dc.identifier.urihttp://hdl.handle.net/10754/627199
dc.description.abstractWe study triangulations $\cal T$ defined on a closed disc $X$ satisfying the following condition: In the interior of $X$, the valence of all vertices of $\cal T$ except one of them (the irregular vertex) is $6$. By using a flat singular Riemannian metric adapted to $\cal T$, we prove a uniqueness theorem when the valence of the irregular vertex is not a multiple of $6$. Moreover, for a given integer $k >1$, we exhibit non isomorphic triangulations on $X$ with the same boundary, and with a unique irregular vertex whose valence is $6k$.
dc.publisherarXiv
dc.relation.urlhttp://arxiv.org/abs/1802.05851v1
dc.relation.urlhttp://arxiv.org/pdf/1802.05851v1
dc.rightsArchived with thanks to arXiv
dc.titleOn triangle meshes with valence dominant vertices
dc.typePreprint
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.eprint.versionPre-print
dc.contributor.institutionUniversite de Lyon, CNRS UMR 5208, Universite Claude Bernard Lyon 1, Institut Camille Jordan, 43 blvd du 11 Novembre 1918, F-69622 Villeurbanne-Cedex, France
dc.identifier.arxivid1802.05851
kaust.personMorvan, Jean-Marie
refterms.dateFOA2018-06-14T03:52:17Z


Files in this item

Thumbnail
Name:
1802.05851v1.pdf
Size:
894.3Kb
Format:
PDF
Description:
Preprint

This item appears in the following Collection(s)

Show simple item record