Show simple item record

dc.contributor.authorAlcheikh, Nouha
dc.contributor.authorTella, Sherif Adekunle
dc.contributor.authorYounis, Mohammad I.
dc.date.accessioned2018-02-22T10:34:40Z
dc.date.available2018-02-22T10:34:40Z
dc.date.issued2018-02-14
dc.identifier.citationAlcheikh N, Tella SA, Younis MI (2018) Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads. Sensors and Actuators A: Physical 273: 19–29. Available: http://dx.doi.org/10.1016/j.sna.2018.01.066.
dc.identifier.issn0924-4247
dc.identifier.doi10.1016/j.sna.2018.01.066
dc.identifier.urihttp://hdl.handle.net/10754/627162
dc.description.abstractThe paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.
dc.description.sponsorshipThis publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) office of sponsored research OSR under Award No. OSR-2016-CRG5-3001.
dc.publisherElsevier BV
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0924424717317764
dc.rightsNOTICE: this is the author’s version of a work that was accepted for publication in Sensors and Actuators A: Physical. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Sensors and Actuators A: Physical, 14 February 2018. DOI: 10.1016/j.sna.2018.01.066. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleAdjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads
dc.typeArticle
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalSensors and Actuators A: Physical
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Mechanical Engineering, State University of New York, Binghamton, NY 13902, USA
kaust.personAlcheikh, Nouha
kaust.personTella, Sherif Adekunle
kaust.personYounis, Mohammad I.
kaust.grant.numberOSR-2016-CRG5-3001
dc.date.published-online2018-02-14
dc.date.published-print2018-04


Files in this item

Thumbnail
Name:
1-s2.0-S0924424717317764-main.pdf
Size:
690.2Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record