Show simple item record

dc.contributor.authorAhmed, Ahfaz
dc.contributor.authorWaqas, Muhammad
dc.contributor.authorNaser, Nimal
dc.contributor.authorSingh, Eshan
dc.contributor.authorRoberts, William L.
dc.contributor.authorChung, Suk-Ho
dc.contributor.authorSarathy, Mani
dc.date.accessioned2018-02-18T08:41:29Z
dc.date.available2018-02-18T08:41:29Z
dc.date.issued2016-10-17
dc.identifier.citationAhmed A, Waqas M, Naser N, Singh E, Roberts W, et al. (2016) Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine. SAE International Journal of Fuels and Lubricants 9. Available: http://dx.doi.org/10.4271/2016-01-2166.
dc.identifier.issn1946-3960
dc.identifier.doi10.4271/2016-01-2166
dc.identifier.urihttp://hdl.handle.net/10754/627139
dc.description.abstractCommercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.
dc.description.sponsorshipThe authors wish to thank Mr. Adrian Ichim from CCRC engine lab for help in performing the engine experiments. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST) and Saudi Aramco under FUELCOM program.
dc.publisherSAE International
dc.relation.urlhttps://saemobilus.sae.org/content/2016-01-2166
dc.rightsArchived with thanks to SAE International Journal of Fuels and Lubricants
dc.titleCompositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine
dc.typeArticle
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentClean Combustion Research Center
dc.identifier.journalSAE International Journal of Fuels and Lubricants
dc.eprint.versionPublisher's Version/PDF
kaust.personAhmed, Ahfaz
kaust.personWaqas, Muhammad
kaust.personNaser, Nimal
kaust.personSingh, Eshan
kaust.personRoberts, William L.
kaust.personChung, Suk-Ho
kaust.personSarathy, Mani
refterms.dateFOA2018-06-14T02:52:26Z


Files in this item

Thumbnail
Name:
Ahmed et al SAE Int. J. Fuels Lubes 2016.pdf
Size:
3.343Mb
Format:
PDF
Description:
Published Article

This item appears in the following Collection(s)

Show simple item record