Show simple item record

dc.contributor.authorZaher, Manal
dc.contributor.authorRashid, Fahad
dc.contributor.authorSong, Bo
dc.contributor.authorJoudeh, Luay
dc.contributor.authorSobhy, Mohamed Abdelmaboud
dc.contributor.authorTehseen, Muhammad
dc.contributor.authorHingorani, Manju M
dc.contributor.authorHamdan, Samir
dc.date.accessioned2018-02-13T13:43:18Z
dc.date.available2018-02-13T13:43:18Z
dc.date.issued2018-02-06
dc.identifier.citationZaher MS, Rashid F, Song B, Joudeh LI, Sobhy MA, et al. (2018) Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway. Nucleic Acids Research. Available: http://dx.doi.org/10.1093/nar/gky082.
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.pmid29420814
dc.identifier.doi10.1093/nar/gky082
dc.identifier.urihttp://hdl.handle.net/10754/627120
dc.description.abstractRNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5'-single-stranded flap is cleaved by structure-specific 5'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.
dc.description.sponsorshipKing Abdullah University of Science and Technology Core Funding (to S.M.H.); Competitive Research Award (CRG3) (to S.M.H.); National Institutes of Health [R15 GM114743 to M.M.H.]. Funding for open access charge: Global Collaborative Research, King Abdullah University of Science and Technology.
dc.publisherOxford University Press (OUP)
dc.relation.urlhttps://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky082/4840237
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleMissed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentBioscience Program
dc.identifier.journalNucleic Acids Research
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA.
kaust.personZaher, Manal S.
kaust.personRashid, Fahad
kaust.personJoudeh, Luay
kaust.personSobhy, Mohamed Abdelmaboud
kaust.personTehseen, Muhammad
kaust.personHamdan, Samir
refterms.dateFOA2018-06-14T05:16:10Z
dc.date.published-online2018-02-06
dc.date.published-print2018-04-06


Files in this item

Thumbnail
Name:
gky082.pdf
Size:
3.721Mb
Format:
PDF
Description:
Published version
Thumbnail
Name:
gky082_supp.pdf
Size:
1.385Mb
Format:
PDF
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Except where otherwise noted, this item's license is described as This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com