Show simple item record

dc.contributor.authorLiu, Gongping
dc.contributor.authorChernikova, Valeriya
dc.contributor.authorLiu, Yang
dc.contributor.authorZhang, Kuang
dc.contributor.authorBelmabkhout, Youssef
dc.contributor.authorShekhah, Osama
dc.contributor.authorZhang, Chen
dc.contributor.authorYi, Shouliang
dc.contributor.authorEddaoudi, Mohamed
dc.contributor.authorKoros, William J.
dc.date.accessioned2018-02-13T10:31:11Z
dc.date.available2018-02-13T10:31:11Z
dc.date.issued2018-02-12
dc.identifier.citationLiu G, Chernikova V, Liu Y, Zhang K, Belmabkhout Y, et al. (2018) Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials. Available: http://dx.doi.org/10.1038/s41563-017-0013-1.
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.pmid29434309
dc.identifier.doi10.1038/s41563-017-0013-1
dc.identifier.doi10.1038/s41563-021-01007-1
dc.identifier.urihttp://hdl.handle.net/10754/627113
dc.description.abstractMembrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal–organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.
dc.description.sponsorshipThe research reported in this publication was supported by KAUST CRG Research Grant URF/1/2222-01; Y.B., O.S. and M.E. acknowledge support from King Abdullah University of Science and Technology; G.L. acknowledges support from National Natural Science Foundation of China (Grant Nos.: 21490585, 21776125, 21406107).
dc.publisherSpringer Nature
dc.relation.urlhttps://www.nature.com/articles/s41563-017-0013-1
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1038/s41563-017-0013-1
dc.titleMixed matrix formulations with MOF molecular sieving for key energy-intensive separations
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentChemical Science Program
dc.contributor.departmentFunctional Materials Design, Discovery and Development (FMD3)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalNature Materials
dc.eprint.versionPost-print
dc.contributor.institutionState Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
dc.contributor.institutionSchool of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
kaust.personChernikova, Valeriya
kaust.personBelmabkhout, Youssef
kaust.personShekhah, Osama
kaust.personEddaoudi, Mohamed
kaust.grant.numberURF/1/2222-01
refterms.dateFOA2018-08-12T00:00:00Z
dc.date.published-online2018-02-12
dc.date.published-print2018-03


Files in this item

Thumbnail
Name:
proof (002)-Nature materials.pdf
Size:
2.561Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record