Show simple item record

dc.contributor.authorSit, Wai-Yu
dc.contributor.authorEisner, Flurin D.
dc.contributor.authorLin, Yen-Hung
dc.contributor.authorFirdaus, Yuliar
dc.contributor.authorSeitkhan, Akmaral
dc.contributor.authorAlbalawi, Ahmed
dc.contributor.authorLaquai, Frédéric
dc.contributor.authorBurgess, Claire H.
dc.contributor.authorMcLachlan, Martyn A.
dc.contributor.authorVolonakis, George
dc.contributor.authorGiustino, Feliciano
dc.contributor.authorAnthopoulos, Thomas D.
dc.date.accessioned2018-02-07T07:02:28Z
dc.date.available2018-02-07T07:02:28Z
dc.date.issued2018-02-02
dc.identifier.citationSit W-Y, Eisner FD, Lin Y-H, Firdaus Y, Seitkhan A, et al. (2018) High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface. Advanced Science: 1700980. Available: http://dx.doi.org/10.1002/advs.201700980.
dc.identifier.issn2198-3844
dc.identifier.doi10.1002/advs.201700980
dc.identifier.urihttp://hdl.handle.net/10754/627061
dc.description.abstractFullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC70BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p–n-like heterointerface between CuSCN and PC70BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.
dc.description.sponsorshipW.-Y.S. and F.E. contributed equally to this work. The work reported here was supported by the King Abdullah University of Science and Technology (KAUST). C.B. and M.A.M. gratefully acknowledge the EPSRC Doctoral Prize Fellowship (ICL) for the financial support. G.V. and F.G. acknowledge Graphene Flagship (Horizon 2020 Grant No. 696656 – GrapheneCore1) for the financial support. G.V. and F.G. also acknowledge the DECI resource “Cartesius” based in The Netherlands at SURFsara and “Abel” based in Oslo with support from the PRACE AISBL.
dc.publisherWiley
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/advs.201700980/full
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleHigh-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface
dc.typeArticle
dc.contributor.departmentAli I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Science
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Physics; Imperial College London; South Kensington London SW7 2AZ UK
dc.contributor.institutionDepartment of Materials; Faculty of Engineering; Imperial College London; South Kensington London SW7 2AZ UK
dc.contributor.institutionDepartment of Materials; University of Oxford; Parks Road Oxford OX1 3PH UK
dc.contributor.institutionDepartment of Materials Science and Engineering; Cornell University; Ithaca NY 14850 USA
kaust.personFirdaus, Yuliar
kaust.personSeitkhan, Akmaral
kaust.personAlbalawi, Ahmed
kaust.personLaquai, Frederic
kaust.personAnthopoulos, Thomas D.
refterms.dateFOA2018-06-13T16:52:12Z
dc.date.published-online2018-02-02
dc.date.published-print2018-04


Files in this item

Thumbnail
Name:
Sit_et_al-2018-Advanced_Science.pdf
Size:
1.387Mb
Format:
PDF
Description:
Published version
Thumbnail
Name:
7b14cb3da03c11eb17b75ee4315676874b043db862b3d80393865f629a4f66cd.sup-1.pdf
Size:
729.5Kb
Format:
PDF
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.