Full waveform inversion using envelope-based global correlation norm
Type
ArticleAuthors
Oh, Juwon
Alkhalifah, Tariq Ali

KAUST Department
Earth Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Seismic Wave Analysis Group
Date
2018-01-30Online Publication Date
2018-01-30Print Publication Date
2018-05-01Permanent link to this record
http://hdl.handle.net/10754/627058
Metadata
Show full item recordAbstract
Various parameterizations have been suggested to simplify inversions of first arrivals, or P −waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P −waves. These parameters are different from the six parameters needed to describe the kinematics of P −waves. Reflection-based radiation patterns from the P − P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios, and data bandwidths allows us to quantify the resolution of different parameterizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P −waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic, orthorhombic) in hierarchical parameterization is the best choice. Hierarchical parametrization reduces the tradeoff between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P −wave propagation need to be retrieved simultaneously, the classic parameterization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parameterizations can be used to ascertain the set of parameters that can be resolved.Citation
Oh J-W, Alkhalifah T (2018) Full waveform inversion using envelope-based global correlation norm. Geophysical Journal International. Available: http://dx.doi.org/10.1093/gji/ggy031.Sponsors
Research reported in this publication was supported by competitive research funding from King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1C1B5077123). The authors would like to thank Statoil ASA and the Volve license partners ExxonMobil Exploration and Production Norway AS and Bayerngas Norge AS for the release of the Volve data. We would like to thank Marianne Houbiers from Statoil for providing some helpful suggestions and corrections. For computer time, this research used the resources of the Supercomputing Laboratory in KAUST. We thank the members of Seismic Wave Analysis Group (SWAG) in KAUST for their helpful discussion. We would like to thank Lapo Boschi as the Associate Editor, Jean-Xavier Dessa and one anonymous reviewer for their helpful suggestions.Publisher
Oxford University Press (OUP)Additional Links
https://academic.oup.com/gji/advance-article-abstract/doi/10.1093/gji/ggy034/4830112ae974a485f413a2113503eed53cd6c53
10.1093/gji/ggy031