Now showing items 21-40 of 113

    • Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

      Pogoreutz, Claudia; Radecker, Nils; Cardenas, Anny; Gärdes, Astrid; Wild, Christian; Voolstra, Christian R. (Frontiers in Microbiology, Frontiers Media SA, 2017-06-28) [Article]
      Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.
    • Draft genomes of the corallimorpharians Amplexidiscus fenestrafer and Discosoma sp

      Wang, Xin; Liew, Yi Jin; Li, Yong; Zoccola, Didier; Tambutte, Sylvie; Aranda, Manuel (Molecular Ecology Resources, Wiley, 2017-06-27) [Article]
      Corallimorpharia are the closest non-calcifying relatives of reef-building corals. Aside from their popularity among aquarium hobbyists, their evolutionary position between the Actiniaria (sea anemones) and the Scleractinia (hard corals) makes them ideal candidates for comparative studies aiming at understanding the evolution of hexacorallian orders in general and reef-building corals in particular. Here we have sequenced and assembled two draft genomes for the Corallimorpharia species Amplexidiscus fenestrafer and Discosoma sp.. The draft genomes encompass 370 Mbp and 445 Mbp respectively and encode for 21,372 and 23,199 genes. To facilitate future studies using these resources, we provide annotations for the predicted gene models-not only at gene level, by annotating gene models with the function of the best-matching homolog, and GO terms when available; but also at protein domain level, where gene function can be better verified through the conservation of the sequence and order of protein domains. Further, we provide an online platform (http://corallimorpharia.reefgenomics.org), which includes a BLAST interface as well as a genome browser to facilitate the use of these resources. We believe that these two genomes are important resources for future studies on hexacorallian systematics and the evolutionary basis of their specific traits such as the symbiotic relationship with dinoflagellates of the genus Symbiodinium or the evolution of calcification in reef-building corals. This article is protected by copyright. All rights reserved.
    • Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start?

      Mies, Miguel; Sumida, Paulo Y. G.; Radecker, Nils; Voolstra, Christian R. (Frontiers in Ecology and Evolution, Frontiers Media SA, 2017-05-30) [Article]
      Symbiodinium are dinoflagellate photosynthetic algae that associate with a diverse array of marine invertebrates, and these relationships are comprehensively documented for adult animal hosts. Conversely, comparatively little is known about the associations during larval development of animal hosts, although four different metazoan phyla (Porifera, Cnidaria, Acoelomorpha, and Mollusca) produce larvae associated with Symbiodinium. These phyla represent considerable diversities in larval forms, manner of symbiont acquisition, and requirements on the presence of symbionts for successful metamorphosis. Importantly, the different requirements are conveyed by specific symbiont types that are selected by the host animal larvae. Nevertheless, it remains to be determined whether these associations during larval stages already represent mutualistic interactions, as evident from the relationship of Symbiodinium with their adult animal hosts. For instance, molecular studies suggest that the host larval transcriptome is nearly unaltered after symbiont acquisition. Even so, a symbiosis-specific gene has been identified in Symbiodinium that is expressed in larval host stages, and similar genes are currently being described for host organisms. However, some reports suggest that the metabolic exchange between host larvae and Symbiodinium may not cover the energetic requirements of the host. Here, we review current studies to summarize what is known about the association between metazoan larvae and Symbiodinium. In particular, our aim was to gather in how far the mutualistic relationship present between adult animals hosts and Symbiodinium is already laid out at the time of symbiont acquisition by host larvae. We conclude that the mutualistic relationship between animal hosts and algal symbionts in many cases is not set up during larval development. Furthermore, symbiont identity may influence whether a mutualism can be established during host larval stages.
    • Expression of a symbiosis-specific gene in Symbiodinium type A1 associated with coral, nudibranch and giant clam larvae

      Mies, M.; Voolstra, Christian R.; Castro, C. B.; Pires, D. O.; Calderon, E. N.; Sumida, P. Y. G. (Royal Society Open Science, The Royal Society, 2017-05-24) [Article]
      Symbiodinium are responsible for the majority of primary production in coral reefs and found in a mutualistic symbiosis with multiple animal phyla. However, little is known about the molecular signals involved in the establishment of this symbiosis and whether it initiates during host larval development. To address this question, we monitored the expression of a putative symbiosis-specific gene (H+-ATPase) in Symbiodinium A1 ex hospite and in association with larvae of a scleractinian coral (Mussismilia hispida), a nudibranch (Berghia stephanieae) and a giant clam (Tridacna crocea). We acquired broodstock for each host, induced spawning and cultured the larvae. Symbiodinium cells were offered and larval samples taken for each host during the first 72 h after symbiont addition. In addition, control samples including free-living Symbiodinium and broodstock tissue containing symbionts for each host were collected. RNA extraction and RT-PCR were performed and amplified products cloned and sequenced. Our results show that H+-ATPase was expressed in Symbiodinium associated with coral and giant clam larvae, but not with nudibranch larvae, which digested the symbionts. Broodstock tissue for coral and giant clam also expressed H+-ATPase, but not the nudibranch tissue sample. Our results of the expression of H+-ATPase as a marker gene suggest that symbiosis between Symbiodinium and M. hispida and T. crocea is established during host larval development. Conversely, in the case of B. stephanieae larvae, evidence does not support a mutualistic relationship. Our study supports the utilization of H+-ATPase expression as a marker for assessing Symbiodinium-invertebrate relationships with applications for the differentiation of symbiotic and non-symbiotic associations. At the same time, insights from a single marker gene approach are limited and future studies should direct the identification of additional symbiosis-specific genes, ideally from both symbiont and host.
    • Exploring the genetic diversity of shallow-water Agariciidae (Cnidaria: Anthozoa) from the Saudi Arabian Red Sea

      Terraneo, Tullia Isotta; Arrigoni, Roberto; Benzoni, Francesca; Tietbohl, Matthew; Berumen, Michael L. (Marine Biodiversity, Springer Nature, 2017-05-19) [Article]
      Scleractinian corals ascribed to the family Agariciidae represent an important component of Red Sea coral reef fauna, though little genetic data are currently available for this group, and existing information shows polyphyly in the examined mesophotic taxa from the Pacific Ocean. In this work, we provide a first genetic survey of Agariciidae from the Saudi Arabian Red Sea, based on a collection of shallow-water material (<30 m) from the Gulf of Aqaba to the Farasan Islands. Two molecular markers were sequenced to infer morphospecies monophyly and relationships, the intergenic region between COI and 16S rRNA from mitochondrial DNA and the ribosomal ITS1 region from nuclear DNA. A total of 20 morphospecies were identified based on classical macromorphological characters. Six, namely Gardineroseris planulata, Pavona maldivensis, Pavona clavus, Pavona decussata, Leptoseris fragilis, and Leptoseris yabei, were resolved with both DNA loci. The molecular boundaries among the remaining 14 species remain unclear. Our results further confirm that the morphology-based taxonomy of most agariciid species is in disagreement with genetics. In order to disentangle the systematics of these taxa, the inclusion of more sampling locations, additional variable loci, and a micromophological approach are likely needed. Our genetic data represent a first step towards the comparison of biodiversity and connectivity between the Red Sea and the rest of the Indo-Pacific.
    • Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

      Grupstra, Carsten G. B.; Coma, Rafel; Ribes, Marta; Leydet, Karine Posbic; Parkinson, John Everett; McDonald, Kelly; Catllà, Marc; Voolstra, Christian R.; Hellberg, Michael E.; Coffroth, Mary Alice (Coral Reefs, Springer Nature, 2017-05-15) [Article]
      Zooxanthellate corals are threatened by climate change but may be able to escape increasing temperatures by colonizing higher latitudes. To determine the effect of host range expansion on symbiont genetic diversity, we examined genetic variation among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them on Oculina spp. samples from the western North Atlantic and the Mediterranean. We then used them to compare symbiont genotype diversity between an Iberian core and an expansion front population of O. patagonica. Only one multilocus S. psygmophilum genotype was identified at the expansion front, and it was shared with the core population, which harbored seven multilocus genotypes. This pattern suggests that O. patagonica range expansion is accompanied by reduced symbiont genetic diversity, possibly due to limited dispersal of symbionts or local selection.
    • Zooxanthellate zoantharians (Anthozoa: Hexacorallia: Zoantharia: Brachycnemina) in the northern Red Sea

      Reimer, James Davis; Montenegro, Javier; Santos, Maria E. A.; Low, Martyn E. Y.; Herrera Sarrias, Marcela; Gatins, Remy; Roberts, May B.; Berumen, Michael L. (Marine Biodiversity, Springer Nature, 2017-05-13) [Article]
      The Red Sea was one of the first areas of the Indo-Pacific to be investigated by marine taxonomists, and the literature on suborder Brachycnemina (Anthozoa: Hexacorallia: Zoantharia) for this region dates from the early nineteenth century. However, in the last 100 years there has been only one focused study on this group in the Red Sea. In the present study, specimens collected from the Saudi Arabian coast of the northern half of the Red Sea were phylogenetically analyzed by sequencing nuclear internal transcribed spacer regions of ribosomal DNA (ITS-rDNA), mitochondrial cytochrome oxidase subunit I (COI), and 16S ribosomal DNA (16S–rDNA). The new results were compared with historical data in the literature and recent results from the Persian Gulf and the southeastern coast of Africa. Results show the presence of six to seven potential Brachycnemina species in the Red Sea; five to six Palythoa species (Palythoa mutuki, P. tuberculosa, P. cf. heliodiscus, P. aff. heliodiscus, and one to two species within the P. sp. “sakurajimensis” group) together with Zoanthus sansibaricus. While P. mutuki, P. tuberculosa, and Z. sansibaricus are known to be widely distributed in the Indo-Pacific, P. cf. heliodiscus and P. sp. “sakurajimensis” have not been reported from the Persian Gulf or the southeastern coast of Africa, and the current results represent large range extensions for these two species. Only one of the observed species, P. aff. heliodiscus, is potentially endemic to the Red Sea, further demonstrating the generally wide distributions of most zooxanthellate Brachycnemina species.
    • Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

      Herrera Sarrias, Marcela; Ziegler, Maren; Voolstra, Christian R.; Aranda, Manuel (Frontiers in Marine Science, Frontiers Media SA, 2017-05-02) [Article]
      Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.
    • Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching

      Pogoreutz, Claudia; Radecker, Nils; Cardenas, Anny; Gärdes, Astrid; Voolstra, Christian R.; Wild, Christian (Global Change Biology, Wiley, 2017-04-21) [Article]
      The disruption of the coral-algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral-associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen-fixing microbes in coral holobiont functioning and breakdown.
    • Using a butterflyfish genome as a general tool for RAD-Seq studies in specialized reef fish

      DiBattista, Joseph; Saenz Agudelo, Pablo; Piatek, Marek J.; Wang, Xin; Aranda, Manuel; Berumen, Michael L. (Molecular Ecology Resources, Wiley, 2017-04-06) [Article]
      Data from a large-scale restriction site associated DNA (RAD-Seq) study of nine butterflyfish species in the Red Sea and Arabian Sea provided a means to test the utility of a recently published draft genome (Chaetodon austriacus) and assess apparent bias in this method of isolating nuclear loci. We here processed double-digest restriction-site (ddRAD) associated DNA sequencing data to identify single nucleotide polymorphism (SNP) markers and their associated function with and without our reference genome to see if it improves the quality of RAD-Seq markers. Our analyses indicate (1) a modest gap between the number of non-annotated versus annotated SNPs across all species, (2) an advantage of using genomic resources for closely related but not distantly related butterflyfish species based on the ability to assign putative gene function to SNPs, and (3) an enrichment of genes among sister butterflyfish taxa related to calcium transmembrane transport and binding. The latter result highlights the potential for this approach to reveal insights into adaptive mechanisms in populations inhabiting challenging coral reef environments such as the Red Sea, Arabian Sea, and Arabian Gulf with further study.
    • Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas

      Hadaidi, Ghaida A.; Röthig, Till; Yum, Lauren; Ziegler, Maren; Arif, Chatchanit; Roder, Cornelia; Burt, John; Voolstra, Christian R. (Scientific Reports, Springer Nature, 2017-03-31) [Article]
      Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata.
    • Entangled fates of holobiont genomes during invasion: nested bacterial and host diversities in Caulerpa taxifolia

      Arnaud-Haond, S.; Aires, T.; Candeias, R.; Teixeira, S. J. L; Duarte, Carlos M.; Valero, M.; Serrão, E. A. (Molecular Ecology, Wiley, 2017-03-20) [Article]
      Successful prevention and mitigation of biological invasions requires retracing the initial steps of introduction, as well as understanding key elements enhancing the adaptability of invasive species. We studied the genetic diversity of the green alga Caulerpa taxifolia and its associated bacterial communities in several areas around the world. The striking congruence of α and ß diversity of the algal genome and endophytic communities reveals a tight association, supporting the holobiont concept as best describing the unit of spreading and invasion. Both genomic compartments support the hypotheses of a unique accidental introduction in the Mediterranean and of multiple invasion events in Southern Australia. In addition to helping with tracing the origin of invasion, bacterial communities exhibit metabolic functions that can potentially enhance adaptability and competitiveness of the consortium they form with their host. We thus hypothesize that low genetic diversities of both host and symbiont communities may contribute to the recent regression in the Mediterranean, in contrast with the persistence of highly diverse assemblages in southern Australia. This study supports the importance of scaling up from the host to the holobiont for a comprehensive understanding of invasions. This article is protected by copyright. All rights reserved.
    • Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns Starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef

      Harrison, Hugo B.; Pratchett, Morgan; Messmer, Vanessa; Saenz-Agudelo, Pablo; Berumen, Michael L. (Diversity, MDPI AG, 2017-03-10) [Article]
      Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia’s Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned ~1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G’ST = −0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations.
    • Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum

      Liew, Yi Jin; Li, Yong; Baumgarten, Sebastian; Voolstra, Christian R.; Aranda, Manuel (PLOS Genetics, Public Library of Science (PLoS), 2017-02-28) [Article]
      RNA editing is a rare post-transcriptional event that provides cells with an additional level of gene expression regulation. It has been implicated in various processes including adaptation, viral defence and RNA interference; however, its potential role as a mechanism in acclimatization has just recently been recognised. Here, we show that RNA editing occurs in 1.6% of all nuclear-encoded genes of Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. All base-substitution edit types were present, and statistically significant motifs were associated with three edit types. Strikingly, a subset of genes exhibited condition-specific editing patterns in response to different stressors that resulted in significant increases of non-synonymous changes. We posit that this previously unrecognised mechanism extends this organism’s capability to respond to stress beyond what is encoded by the genome. This in turn may provide further acclimatization capacity to these organisms, and by extension, their coral hosts.
    • Bacterial community dynamics are linked to patterns of coral heat tolerance

      Ziegler, Maren; Seneca, Francois O.; Yum, Lauren; Palumbi, Stephen R.; Voolstra, Christian R. (Nature Communications, Springer Nature, 2017-02-10) [Article]
      Ocean warming threatens corals and the coral reef ecosystem. Nevertheless, corals can be adapted to their thermal environment and inherit heat tolerance across generations. In addition, the diverse microbes that associate with corals have the capacity for more rapid change, potentially aiding the adaptation of long-lived corals. Here, we show that the microbiome of reef corals is different across thermally variable habitats and changes over time when corals are reciprocally transplanted. Exposing these corals to thermal bleaching conditions changes the microbiome for heat-sensitive corals, but not for heat-tolerant corals growing in habitats with natural high heat extremes. Importantly, particular bacterial taxa predict the coral host response in a short-term heat stress experiment. Such associations could result from parallel responses of the coral and the microbial community to living at high natural temperatures. A competing hypothesis is that the microbial community and coral heat tolerance are causally linked.
    • Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

      Neave, Matthew J.; Michell, Craig; Apprill, Amy; Voolstra, Christian R. (Scientific Reports, Springer Nature, 2017-01-17) [Article]
      Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.
    • Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula

      Ziegler, Maren; Arif, Chatchanit; Burt, John A.; Dobretsov, Sergey; Roder, Cornelia; Lajeunesse, Todd C.; Voolstra, Christian R. (Journal of Biogeography, Wiley, 2017-01-02) [Article]
      Aim: Coral reefs rely on the symbiosis between scleractinian corals and intracellular, photosynthetic dinoflagellates of the genus Symbiodinium making the assessment of symbiont diversity critical to our understanding of ecological resilience of these ecosystems. This study characterizes Symbiodinium diversity around the Arabian Peninsula, which contains some of the most thermally diverse and understudied reefs on Earth. Location: Shallow water coral reefs throughout the Red Sea (RS), Sea of Oman (SO), and Persian/Arabian Gulf (PAG). Methods: Next-generation sequencing of the ITS2 marker gene was used to assess Symbiodinium community composition and diversity comprising 892 samples from 46 hard and soft coral genera. Results: Corals were associated with a large diversity of Symbiodinium, which usually consisted of one or two prevalent symbiont types and many types at low abundance. Symbiodinium communities were strongly structured according to geographical region and to a lesser extent by coral host identity. Overall symbiont communities were composed primarily of species from clade A and C in the RS, clade A, C, and D in the SO, and clade C and D in the PAG, representing a gradual shift from C- to D-dominated coral hosts. The analysis of symbiont diversity in an Operational Taxonomic Unit (OTU)-based framework allowed the identification of differences in symbiont taxon richness over geographical regions and host genera. Main conclusions: Our study represents a comprehensive overview over biogeography and molecular diversity of Symbiodinium in the Arabian Seas, where coral reefs thrive in one of the most extreme environmental settings on the planet. As such our data will serve as a baseline for further exploration into the effects of environmental change on host-symbiont pairings and the identification and ecological significance of Symbiodinium types from regions already experiencing 'Future Ocean' conditions.
    • Data from: Using a butterflyfish genome as a general tool for RAD-Seq studies in specialized reef fish

      DiBattista, Joseph; Saenz Agudelo, Pablo; Piatek, Marek J.; Wang, Xin; Aranda, Manuel; Berumen, Michael L. (Dryad Digital Repository, 2017) [Dataset]
    • Reefgenomics.Org - a repository for marine genomics data

      Liew, Yi Jin; Aranda, Manuel; Voolstra, Christian R. (Database, Oxford University Press (OUP), 2016-12-26) [Article]
      Over the last decade, technological advancements have substantially decreased the cost and time of obtaining large amounts of sequencing data. Paired with the exponentially increased computing power, individual labs are now able to sequence genomes or transcriptomes to investigate biological questions of interest. This has led to a significant increase in available sequence data. Although the bulk of data published in articles are stored in public sequence databases, very often, only raw sequencing data are available; miscellaneous data such as assembled transcriptomes, genome annotations etc. are not easily obtainable through the same means. Here, we introduce our website (http://reefgenomics.org) that aims to centralize genomic and transcriptomic data from marine organisms. Besides providing convenient means to download sequences, we provide (where applicable) a genome browser to explore available genomic features, and a BLAST interface to search through the hosted sequences. Through the interface, multiple datasets can be queried simultaneously, allowing for the retrieval of matching sequences from organisms of interest. The minimalistic, no-frills interface reduces visual clutter, making it convenient for end-users to search and explore processed sequence data.
    • Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle

      Aranda, Manuel; Li, Yangyang; Liew, Yi Jin; Baumgarten, Sebastian; Simakov, O.; Wilson, M. C.; Piel, J.; Ashoor, Haitham; Bougouffa, Salim; Bajic, Vladimir B.; Ryu, Tae Woo; Ravasi, Timothy; Bayer, Till; Micklem, G.; Kim, H.; Bhak, J.; LaJeunesse, T. C.; Voolstra, Christian R. (Scientific Reports, Springer Nature, 2016-12-22) [Article]
      Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.