• Login
    Search 
    •   Home
    • Projects
    • Global Ocean Genome Project
    • Reef Genomics, part of the Global Ocean Genome Project
    • Search
    •   Home
    • Projects
    • Global Ocean Genome Project
    • Reef Genomics, part of the Global Ocean Genome Project
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorVoolstra, Christian R. (3)Arif, Chatchanit (1)Banguera Hinestroza, Eulalia (1)Barbrook, Adrian (1)Bayer, Till (1)View MoreDepartmentBiological and Environmental Sciences and Engineering (BESE) Division (3)Marine Science Program (3)Red Sea Research Center (RSRC) (3)JournalMolecular Ecology (2)Ecology and Evolution (1)Publisher
    Wiley (3)
    Subject
    coral reefs (3)
    Symbiodinium (2)symbiosis (2)Aiptasia (1)cnidaria (1)View MoreTypeArticle (3)Year (Issue Date)2018 (1)2014 (1)2013 (1)Item AvailabilityOpen Access (2)Metadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome

    Pogoreutz, Claudia; Radecker, Nils; Cardenas, Anny; Gärdes, Astrid; Wild, Christian; Voolstra, Christian R. (Ecology and Evolution, Wiley, 2018-01-25) [Article]
    The importance of Symbiodinium algal endosymbionts and a diverse suite of bacteria for coral holobiont health and functioning are widely acknowledged. Yet, we know surprisingly little about microbial community dynamics and the stability of host-microbe associations under adverse environmental conditions. To gain insight into the stability of coral host-microbe associations and holobiont structure, we assessed changes in the community structure of Symbiodinium and bacteria associated with the coral Pocillopora verrucosa under excess organic nutrient conditions. Pocillopora-associated microbial communities were monitored over 14 days in two independent experiments. We assessed the effect of excess dissolved organic nitrogen (DON) and excess dissolved organic carbon (DOC). Exposure to excess nutrients rapidly affected coral health, resulting in two distinct stress phenotypes: coral bleaching under excess DOC and severe tissue sloughing (>90% tissue loss resulting in host mortality) under excess DON. These phenotypes were accompanied by structural changes in the Symbiodinium community. In contrast, the associated bacterial community remained remarkably stable and was dominated by two Endozoicomonas phylotypes, comprising on average 90% of 16S rRNA gene sequences. This dominance of Endozoicomonas even under conditions of coral bleaching and mortality suggests the bacterial community of P. verrucosa may be rather inflexible and thereby unable to respond or acclimatize to rapid changes in the environment, contrary to what was previously observed in other corals. In this light, our results suggest that coral holobionts might occupy structural landscapes ranging from a highly flexible to a rather inflexible composition with consequences for their ability to respond to environmental change.
    Thumbnail

    Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region

    Arif, Chatchanit; Daniels, Camille Arian; Bayer, Till; Banguera Hinestroza, Eulalia; Barbrook, Adrian; Howe, Christopher J.; LaJeunesse, Todd C.; Voolstra, Christian R. (Molecular Ecology, Wiley, 2014-08-18) [Article]
    The persistence of coral reef ecosystems relies on the symbiotic relationship between scleractinian corals and intracellular, photosynthetic dinoflagellates in the genus Symbiodinium. Genetic evidence indicates that these symbionts are biologically diverse and exhibit discrete patterns of environmental and host distribution. This makes the assessment of Symbiodinium diversity critical to understanding the symbiosis ecology of corals. Here, we applied pyrosequencing to the elucidation of Symbiodinium diversity via analysis of the internal transcribed spacer 2 (ITS2) region, a multicopy genetic marker commonly used to analyse Symbiodinium diversity. Replicated data generated from isoclonal Symbiodinium cultures showed that all genomes contained numerous, yet mostly rare, ITS2 sequence variants. Pyrosequencing data were consistent with more traditional denaturing gradient gel electrophoresis (DGGE) approaches to the screening of ITS2 PCR amplifications, where the most common sequences appeared as the most intense bands. Further, we developed an operational taxonomic unit (OTU)-based pipeline for Symbiodinium ITS2 diversity typing to provisionally resolve ecologically discrete entities from intragenomic variation. A genetic distance cut-off of 0.03 collapsed intragenomic ITS2 variants of isoclonal cultures into single OTUs. When applied to the analysis of field-collected coral samples, our analyses confirm that much of the commonly observed Symbiodinium ITS2 diversity can be attributed to intragenomic variation. We conclude that by analysing Symbiodinium populations in an OTU-based framework, we can improve objectivity, comparability and simplicity when assessing ITS2 diversity in field-based studies.
    Thumbnail

    A journey into the wild of the cnidarian model system Aiptasia and its symbionts

    Voolstra, Christian R. (Molecular Ecology, Wiley, 2013-08-27) [Article]
    The existence of coral reef ecosystems relies critically on the mutualistic relationship between calcifying cnidarians and photosynthetic, dinoflagellate endosymbionts in the genus Symbiodinium. Reef-corals have declined globally due to anthropogenic stressors, for example, rising sea-surface temperatures and pollution that often disrupt these symbiotic relationships (known as coral bleaching), exacerbating mass mortality and the spread of disease. This threatens one of the most biodiverse marine ecosystems providing habitats to millions of species and supporting an estimated 500 million people globally (Hoegh-Guldberg et al. 2007). Our understanding of cnidarian-dinoflagellate symbioses has improved notably with the recent application of genomic and transcriptomic tools (e.g. Voolstra et al. 2009; Bayer et al. 2012; Davy et al. 2012), but a model system that allows for easy manipulation in a laboratory environment is needed to decipher underlying cellular mechanisms important to the functioning of these symbioses. To this end, the sea anemone Aiptasia, otherwise known as a 'pest' to aquarium hobbyists, is emerging as such a model system (Schoenberg & Trench 1980; Sunagawa et al. 2009; Lehnert et al. 2012). Aiptasia is easy to grow in culture and, in contrast to its stony relatives, can be maintained aposymbiotically (i.e. dinoflagellate free) with regular feeding. However, we lack basic information on the natural distribution and genetic diversity of these anemones and their endosymbiotic dinoflagellates. These data are essential for placing the significance of this model system into an ecological context. In this issue of Molecular Ecology, Thornhill et al. (2013) are the first to present genetic evidence on the global distribution, diversity and population structure of Aiptasia and its associated Symbiodinium spp. By integrating analyses of the host and symbiont, this research concludes that the current Aitpasia taxonomy probably needs revision and that two distinct Aiptasia lineages are prevalent that have probably been spread through human activity. One lineage engages in a specific symbiosis with Symbiodinium minutum throughout the tropics, whereas a second, local Aiptasia sp. population in Florida appears more flexible in partnering with more than one symbiont. The existence of symbiont-specific and symbiont-flexible Aiptasia lineages can greatly complement laboratory-based experiments looking into mechanisms of symbiont selectivity. In a broader context, the study by Thornhill et al. (2013) should inspire more studies to target the natural environment of model systems in a global context targeting all participating member species when establishing ecological and genetic baselines. © 2013 John Wiley & Sons Ltd.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.