• Login
    Search 
    •   Home
    • Projects
    • Global Ocean Genome Project
    • Reef Genomics, part of the Global Ocean Genome Project
    • Search
    •   Home
    • Projects
    • Global Ocean Genome Project
    • Reef Genomics, part of the Global Ocean Genome Project
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorBerumen, Michael L. (4)
    Harrison, Hugo B. (4)
    Jones, Geoffrey P. (3)Williamson, David H. (3)Bonin, Mary C. (2)View MoreDepartmentBiological and Environmental Sciences and Engineering (BESE) Division (4)Marine Science Program (4)Red Sea Research Center (RSRC) (4)Bioscience Program (1)Coastal and Marine Resources Core Lab (1)View MoreJournalMolecular Ecology (4)KAUST Grant NumberCRG-1-2012-BER-002 (1)OCRF-SPCF-2011-BER-001 (1)Publisher
    Wiley (4)
    Subjectcoral trout (Plectropomus spp.) (1)ecological genetics (1)fish (1)Great Barrier Reef Marine Park (1)hybridization (1)View MoreTypeArticle (4)Year (Issue Date)2017 (1)2016 (2)2015 (1)Item AvailabilityOpen Access (4)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-4 of 4

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 4CSV
    • 4RefMan
    • 4EndNote
    • 4BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    Williamson, David H.; Harrison, Hugo B.; Almany, Glenn R.; Berumen, Michael L.; Bode, Michael; Bonin, Mary C.; Choukroun, Severine; Doherty, Peter J.; Frisch, Ashley J.; Saenz-Agudelo, Pablo; Jones, Geoffrey P. (Molecular Ecology, Wiley, 2016-12-09) [Article]
    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.
    Thumbnail

    Seascape genetics along environmental gradients in the Arabian Peninsula: insights from ddRAD sequencing of anemonefishes

    Saenz Agudelo, Pablo; DiBattista, Joseph; Piatek, Marek J.; Gaither, Michelle R.; Harrison, Hugo B.; Nanninga, Gerrit B.; Berumen, Michael L. (Molecular Ecology, Wiley, 2015-12-12) [Article]
    Understanding the processes that shape patterns of genetic structure across space is a central aim of landscape genetics. However, it remains unclear how geographic features and environmental variables shape gene flow, particularly for marine species in large complex seascapes. Here, we evaluated the genomic composition of the two-band anemonefish Amphiprion bicinctus across its entire geographic range in the Red Sea and Gulf of Aden, as well as its close relative, Amphiprion omanensis endemic to the southern coast of Oman. Both the Red Sea and the Arabian Sea are complex and environmentally heterogeneous marine systems that provide an ideal scenario to address these questions. Our findings confirm the presence of two genetic clusters previously reported for A. bicinctus in the Red Sea. Genetic structure analyses suggest a complex seascape configuration, with evidence of both Isolation by Distance (IBD) and Isolation by Environment (IBE). In addition to IBD and IBE, genetic structure among sites was best explained when two barriers to gene flow were also accounted for. One of these coincides with a strong oligotrophic-eutrophic gradient at around 16-20˚N in the Red Sea. The other agrees with an historical bathymetric barrier at the straight of Bab al Mandab. Finally, these data support the presence of inter-specific hybrids at an intermediate suture zone at Socotra and indicate complex patterns of genomic admixture in the Gulf of Aden with evidence of introgression between species. Our findings highlight the power of recent genomic approaches to resolve subtle patterns of gene flow in marine seascapes.
    Thumbnail

    The role of marine reserves in the replenishment of a locally-impacted population of anemonefish on the Great Barrier Reef

    Bonin, Mary C.; Harrison, Hugo B.; Williamson, David H.; Frisch, Ashley J.; Saenz Agudelo, Pablo; Berumen, Michael L.; Jones, Geoffrey P. (Molecular Ecology, Wiley, 2016-01-19) [Article]
    The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally, and that breeding adults living in reserves were responsible for 79% (31 out of 39) of these of locally-produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 out of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.
    Thumbnail

    Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish

    Harrison, Hugo B.; Berumen, Michael L.; Saenz-Agudelo, Pablo; Salas, Eva; Williamson, David H.; Jones, Geoffrey P. (Molecular Ecology, Wiley, 2017-10-28) [Article]
    Coral reefs are highly diverse ecosystems, where numerous closely related species often coexist. How new species arise and are maintained in these high geneflow environments have been long-standing conundrums. Hybridization and patterns of introgression between sympatric species provide a unique insight into the mechanisms of speciation and the maintenance of species boundaries. In this study, we investigate the extent of hybridization between two closely related species of coral reef fish: the common coral trout (Plectropomus leopardus) and the bar-cheek coral trout (Plectropomus maculatus). Using a complementary set of 25 microsatellite loci, we distinguish pure genotype classes from first- and later-generation hybrids, identifying 124 interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary processes are acting to maintain species barriers. We elaborate on these finding to investigate the extent of genomic introgression and admixture from 2,271 SNP loci recovered from a ddRAD library of pure and hybrid individuals. An analysis of genomic clines on recovered loci indicates that 261 SNP loci deviate from a model of neutral introgression, of which 132 indicate a pattern of introgression consistent with selection favouring both hybrid and parental genotypes. Our findings indicate genome-wide, bidirectional introgression between two sympatric species of coral reef fishes and provide further support to a growing body of evidence for the role of hybridization in the evolution of coral reef fishes.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.