• Login
    Search 
    •   Home
    • Projects
    • Global Ocean Genome Project
    • Reef Genomics, part of the Global Ocean Genome Project
    • Search
    •   Home
    • Projects
    • Global Ocean Genome Project
    • Reef Genomics, part of the Global Ocean Genome Project
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorBerumen, Michael L. (1)Bowen, Brian W. (1)Choat, John Howard (1)Craig, Matthew T. (1)Dibattista, Joseph D. (1)View MoreDepartmentBiological and Environmental Sciences and Engineering (BESE) Division (1)Marine Science Program (1)Red Sea Research Center (RSRC) (1)Reef Ecology Lab (1)JournalJournal of Biogeography (1)KAUST Acknowledged Support UnitBioscience Core Laboratory (1)Coastal and Marine Laboratory (1)
    Red Sea Research Center (1)
    Publisher
    Wiley (1)
    SubjectCoalescent (1)Cryptic speciation (1)Dispersal (1)Gene flow (1)Genealogical concordance (1)View MoreTypeArticle (1)Year (Issue Date)2013 (1)Item AvailabilityMetadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    After continents divide: Comparative phylogeography of reef fishes from the Red Sea and Indian Ocean

    Dibattista, Joseph D.; Berumen, Michael L.; Gaither, Michelle R.; Rocha, Luiz A.; Eble, Jeff A.; Choat, John Howard; Craig, Matthew T.; Skillings, Derek J.; Bowen, Brian W. (Journal of Biogeography, Wiley, 2013-01-07) [Article]
    Aim: The Red Sea is a biodiversity hotspot characterized by a unique marine fauna and high endemism. This sea began forming c. 24 million years ago with the separation of the African and Arabian plates, and has been characterized by periods of desiccation, hypersalinity and intermittent connection to the Indian Ocean. We aim to evaluate the impact of these events on the genetic architecture of the Red Sea reef fish fauna. Location: Red Sea and Western Indian Ocean. Methods: We surveyed seven reef fish species from the Red Sea and adjacent Indian Ocean using mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences. To assess genetic variation and evolutionary connectivity within and between these regions, we estimated haplotype diversity (h) and nucleotide diversity (π), reconstructed phylogenetic relationships among haplotypes, and estimated gene flow and time of population separation using Bayesian coalescent-based methodology. Results: Our analyses revealed a range of scenarios from shallow population structure to diagnostic differences that indicate evolutionary partitions and possible cryptic species. Conventional molecular clocks and coalescence analyses indicated time-frames for divergence between these bodies of water ranging from 830,000 years to contemporary exchange or recent range expansion. Colonization routes were bidirectional, with some species moving from the Indian Ocean to the Red Sea compared with expansion out of the Red Sea for other species. Main conclusions: We conclude that: (1) at least some Red Sea reef fauna survived multiple salinity crises; (2) endemism is higher in the Red Sea than previously reported; and (3) the Red Sea is an evolutionary incubator, occasionally contributing species to the adjacent Indian Ocean. The latter two conclusions - elevated endemism and species export - indicate a need for enhanced conservation priorities for the Red Sea. © 2013 Blackwell Publishing Ltd.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.