• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Multiscale Phase Inversion of Seismic Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    geo2017-0353.1.pdf
    Size:
    4.394Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Fu, Lei
    Guo, Bowen cc
    Sun, Yonghe
    Schuster, Gerard T. cc
    KAUST Department
    Center for Subsurface Imaging and Fluid Modeling
    Earth Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2018-02-13
    Online Publication Date
    2018-02-13
    Print Publication Date
    2018-03
    Permanent link to this record
    http://hdl.handle.net/10754/627013
    
    Metadata
    Show full item record
    Abstract
    We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.
    Citation
    Fu L, Guo B, Sun Y, Schuster GT (2017) Multiscale Phase Inversion of Seismic Data. GEOPHYSICS: 1–52. Available: http://dx.doi.org/10.1190/geo2017-0353.1.
    Sponsors
    The research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. We are grateful to the sponsors of the Center for Subsurface Imaging and Modeling (CSIM) Consortium for their financial support. For computer time, this research used the resources of the Supercomputing Laboratory at KAUST and the IT Research Computing Group. We thank them for providing the computational resources required for carrying out this work. We greatly appreciate the constructive comments and suggestions from two anonymous reviewers, which helped improve this paper.
    Publisher
    Society of Exploration Geophysicists
    Journal
    GEOPHYSICS
    DOI
    10.1190/geo2017-0353.1
    Additional Links
    https://library.seg.org/doi/10.1190/geo2017-0353.1
    ae974a485f413a2113503eed53cd6c53
    10.1190/geo2017-0353.1
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.