Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water
Name:
c7sm01904a2.mov
Size:
2.109Mb
Format:
QuickTime video
Description:
Supplemental files
Name:
c7sm01904a3.mov
Size:
1.381Mb
Format:
QuickTime video
Description:
Supplemental files
Type
ArticleKAUST Department
High-Speed Fluids Imaging LaboratoryMechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2018Permanent link to this record
http://hdl.handle.net/10754/627008
Metadata
Show full item recordAbstract
We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meters tall water tank, It is demonstrated that even a very thin air layer (~ 1 – 2 μm) that covers the freshly dipped superhydrophobic sphere, can reduce the drag force on the spheres by up to 80 %, at Reynolds numbers 105 - 3×105 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implication for the development of sustainable air-layer-based energy saving technologies.Citation
Jetly A, Vakarelski IU, Thoroddsen ST (2018) Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water. Soft Matter. Available: http://dx.doi.org/10.1039/c7sm01904a.Sponsors
This work was supported by the King Abdullah University of Science and Technology (KAUST). We acknowledge Mr. Ziqiang Yang for the assistance in the some of the experiments. The AFM imaging was performed in the KAUST Microfluidics Thrust Area Labs.Publisher
Royal Society of Chemistry (RSC)Journal
Soft MatterPubMed ID
29411833ae974a485f413a2113503eed53cd6c53
10.1039/c7sm01904a
Scopus Count
Related articles
- Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.
- Authors: Vakarelski IU, Chan DY, Thoroddsen ST
- Issue date: 2014 Aug 21
- Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
- Authors: Saranadhi D, Chen D, Kleingartner JA, Srinivasan S, Cohen RE, McKinley GH
- Issue date: 2016 Oct
- Water entry and fall of hydrophobic and superhydrophobic Teflon spheres.
- Authors: Di Mundo R, Bottiglione F, Pascazio G, Carbone G
- Issue date: 2018 Nov 7
- Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
- Authors: Ahmmed KM, Patience C, Kietzig AM
- Issue date: 2016 Oct 12
- Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium.
- Authors: Yao C, Zhang J, Xue Z, Yu K, Yu X, Yang X, Qu Q, Gan W, Wang J, Jiang L
- Issue date: 2021 Jan 27