• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Mesophase Formation Stabilizes High-purity Magic-sized Clusters

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Nevers, Douglas R.
    Williamson, Curtis B.
    Savitzky, Benjamin H
    Hadar, Ido
    Banin, Uri
    Kourkoutis, Lena F. cc
    Hanrath, Tobias
    Robinson, Richard D.
    KAUST Grant Number
    KUS-C1-018-02
    Date
    2018-01-27
    Online Publication Date
    2018-01-27
    Print Publication Date
    2018-03-14
    Permanent link to this record
    http://hdl.handle.net/10754/626994
    
    Metadata
    Show full item record
    Abstract
    Magic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. Based on insights from in-situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large, hexagonal organic-inorganic mesophase (>100 nm grain size) that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products, but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.
    Citation
    Nevers DR, Williamson CB, Savitzky BH, Hadar I, Banin U, et al. (2018) Mesophase Formation Stabilizes High-purity Magic-sized Clusters. Journal of the American Chemical Society. Available: http://dx.doi.org/10.1021/jacs.7b12175.
    Sponsors
    This work was supported in part by the National Science Foundation (NSF) under Award No. CMMI-1344562. U.B. acknowledges funding for this project from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n° 741767). U.B. also thanks the Alfred & Erica Larisch memorial chair. B.H.S. and L.F.K. acknowledge support by the Packard Foundation. B.H.S was supported by NSF GRFP grant DGE- 1144153. This work also made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC (Materials Research Science and Engineering Centers) program (Grant DMR-1719875). The FEI Titan Themis 300 was acquired through NSF-MRI-1429155, with additional support from Cornell University, the Weill Institute and the Kavli Institute at Cornell. This work includes research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR- 1332208. Dynamic light scattering measurements were performed in a facility supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). This work made use of the Cornell Chemistry NMR Facility, which is supported in part by the NSF-MRI grant CHE- 1531632. R.D.R. thanks the U.S. Fulbright Scholar Program for partial funding during this work. The authors would like to thank the following individual for assistance with experiments and material characterization as well as useful discussion. Specifically, Detlef Smilgies provided equipment and helpful discussion regarding the X-ray scattering experiments. Stan Stoupin set-up and calibrated the beamline and detector for SAXS/WAXS, and helped with data analysis. Ivan Keresztes performed the NMR data acquisition, helped with analysis, and provided useful guidance.
    Publisher
    American Chemical Society (ACS)
    Journal
    Journal of the American Chemical Society
    DOI
    10.1021/jacs.7b12175
    ae974a485f413a2113503eed53cd6c53
    10.1021/jacs.7b12175
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.