Show simple item record

dc.contributor.authorBenzaqui, Marvin
dc.contributor.authorS. Pillai, Renjith
dc.contributor.authorSabetghadam, Anahid
dc.contributor.authorBenoit, Virginie
dc.contributor.authorNormand, Périne
dc.contributor.authorMarrot, Jerome
dc.contributor.authorMenguy, Nicolas
dc.contributor.authorMontero, David
dc.contributor.authorShepard, William
dc.contributor.authorTissot, Antoine
dc.contributor.authorMartineau-Corcos, Charlotte
dc.contributor.authorSicard, Clémence
dc.contributor.authorMihaylov, Mihail
dc.contributor.authorCarn, Florent
dc.contributor.authorBeurroeis, Isabelle
dc.contributor.authorLlewellyn, Philip L.
dc.contributor.authorDe Weireld, Guy
dc.contributor.authorHadjiivanov, Konstantin
dc.contributor.authorGascon, Jorge
dc.contributor.authorKapteijn, Freek
dc.contributor.authorMaurin, Guillaume
dc.contributor.authorSteunou, Nathalie
dc.contributor.authorSerre, Christian
dc.date.accessioned2018-02-01T07:25:01Z
dc.date.available2018-02-01T07:25:01Z
dc.date.issued2017-12-04
dc.identifier.citationBenzaqui M, Pillai RS, Sabetghadam A, Benoit V, Normand P, et al. (2017) Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture. Chemistry of Materials 29: 10326–10338. Available: http://dx.doi.org/10.1021/acs.chemmater.7b03203.
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.doi10.1021/acs.chemmater.7b03203
dc.identifier.urihttp://hdl.handle.net/10754/626982
dc.description.abstractA microporous Al trimesate-based metal-organic framework (MOF), denoted MIL-96-(Al), was selected as a porous hybrid filler for the processing of mixed matrix membranes (MMMs) for CO2/N-2 postcombustion separation. First, the structural model of MIL-96-(Al) initially reported was revisited using a combination of synchrotron-based single-crystal X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and density functional theory (DFT) calculations. In a second step, pure MIL-96-(Al) crystals differing by their size and aspect ratio, including anisotropic hexagonal platelets and nanoparticles of about 70 nm in diameter, were prepared. Then, a combination of in situ IR spectroscopy, single-gas, and CO2/N-2 coadsorption experiments, calorimetry, and molecular simulations revealed that MIL-96-(Al) nanoparticles show a relatively high CO2 affinity over N-2 owing to strong interactions between CO2 molecules and several adsorption sites such as Al3+ Lewis centers, coordinated water, and hydroxyl groups. Finally, the high compatibility between MIL-96-(Al) nanoparticles and the 6FDA-DAM polymer allowed the processing of homogeneous and defect-free MMMs with a high MOF loading (up to 25 wt %) that outperform pure polymer membranes for CO2/N-2 separation.
dc.description.sponsorshipWe acknowledge the European Community Seventh Framework Program (FP7/2007-2013) for funding the research presented in this article under Grant Agreement No. 608490 (Project M4CO2). We thank IMPC FR2482 for SEM-FEG instrumentation funded by CNRS, UPMC, and C'Nano projects of Region Ile-de-France. We also acknowledge synchrotrons SOLEIL (Saint-Aubin, France) and ALBA (Barcelona, Spain) for SAXS beam time allocation. We additionally thank Thomas Bizien (SWING, SOLEIL) for his help during SAXS experiments and the staff of the PROMMA 2A at SOLEIL for technical assistance. G.M. thanks Institut Universitaire de France for its support.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttp://pubs.acs.org/doi/10.1021/acs.chemmater.7b03203
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/10.1021/acs.chemmater.7b03203.
dc.titleRevisiting the Aluminum Trimesate-based MOF (MIL-96): from Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture.
dc.typeArticle
dc.contributor.departmentChemical Engineering Program
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalChemistry of Materials
dc.eprint.versionPost-print
dc.contributor.institutionInstitut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielle de Paris, PSL Research University, Paris, 75005, , , , France
dc.contributor.institutionInstitut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, 45 avenue des Etats-Unis, Cedex Versailles, 78035, , , , France
dc.contributor.institutionInstitut Charles Gerhardt Montpellier, UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, Cedex 05 Montpellier, 34095, , , France
dc.contributor.institutionCatalysis Engineering-Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, , Netherlands
dc.contributor.institutionCNRS, MADIREL, UMR 7246, Aix Marseille University, Marseille, 13397, , , , France
dc.contributor.institutionService de Thermodynamique et de Physique Mathématique, Faculté Polytechnique, Université de Mons, 20 Place du Parc, Mons, 7000, , , Belgium
dc.contributor.institutionInstitut de Minéralogie de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, MNHN IRD, UPMC Université Paris 06, Sorbonne Universités, 4 place Jussieu, Paris, 75005, , , , , , France
dc.contributor.institutionInstitut des Matériaux de Paris Centre (IMPC), FR 2482 CNRS, UPMC Université Paris 06, Sorbonne Universités, 4 place Jussieu, Cedex 05 Paris, 75252, , , , France
dc.contributor.institutionSynchrotron Soleil, L'Orme des Merisiers, Saint Aubin, BP 48, Gif-sur-Yvette, 91192, , France
dc.contributor.institutionCNRS, CEMHTI UPR3079, Université d'Orléans, Orléans, F-45071, , , France
dc.contributor.institutionInstitute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, 1113, , , Bulgaria
dc.contributor.institutionLaboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Diderot, Bâtiment Condorcet, 10 rue A. Domon et L. Duquet, Paris, 75013, , , France
kaust.personGascon, Jorge
dc.relation.issupplementedbyDOI:10.5517/ccdc.csd.cc1pb2y1
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Dataset]</i> <br/> Benzaqui, M., Pillai, R. S., Sabetghadam, A., Benoit, V., Normand, P., Marrot, J., Menguy, N., Montero, D., Shepard, W., Tissot, A., Martineau-Corcos, C., Sicard, C., Mihaylov, M., Carn, F., Beurroies, I., Llewellyn, P. L., De Weireld, G., Hadjiivanov, K., Gascon, J., … Serre, C. (2018). <i>CCDC 1558833: Experimental Crystal Structure Determination</i> [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC1PB2Y1. DOI: <a href="https://doi.org/10.5517/ccdc.csd.cc1pb2y1" >10.5517/ccdc.csd.cc1pb2y1</a> Handle: <a href="http://hdl.handle.net/10754/664000" >10754/664000</a></a></li></ul>
dc.date.published-online2017-12-04
dc.date.published-print2017-12-26


Files in this item

Thumbnail
Name:
acs.chemmater.7b03203.pdf
Size:
2.580Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record