• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Mi, Yang
    Liu, Zhixiong
    Shang, Qiuyu
    Niu, Xinxiang
    Shi, Jia
    Zhang, Shuai
    Chen, Jie
    Du, Wenna
    Wu, Zhiyong
    Wang, Rui
    Qiu, Xiaohui
    Hu, Xiaoyong
    Zhang, Qing cc
    Wu, Tao cc
    Liu, Xinfeng cc
    KAUST Department
    Laboratory of Nano Oxides for Sustainable Energy
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2018-01-10
    Online Publication Date
    2018-01-10
    Print Publication Date
    2018-03
    Permanent link to this record
    http://hdl.handle.net/10754/626966
    
    Metadata
    Show full item record
    Abstract
    Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.
    Citation
    Mi Y, Liu Z, Shang Q, Niu X, Shi J, et al. (2018) Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities. Small: 1703136. Available: http://dx.doi.org/10.1002/smll.201703136.
    Sponsors
    Y.M. and Z.L. contributed equally to this work. X.F.L. thanks the support from the Ministry of Science and Technology (Nos. 2016YFA0200700 and 2017YFA0205004), National Natural Science Foundation of China (No. 21673054), Key Research Program of Frontier Science, CAS (No. QYZDB-SSW-SYS031). Q.Z. acknowledges funding support from the Ministry of Science and Technology (2017YFA0205700; 2017YFA0304600) and Natural Science Foundation of China (No. 61774003). Q.Z. also acknowledges the support of start-up funding from Peking University, one-thousand talent programs from Chinese government, open research fund program of the state key laboratory of low-dimensional quantum physics. Y.M. thanks the financial support from China Postdoctoral Science Foundation (No. 2017M620031). W.D. thanks the funding support from the Natural Science Foundation of China (No. 61704038).
    Publisher
    Wiley
    Journal
    Small
    DOI
    10.1002/smll.201703136
    PubMed ID
    29320610
    Additional Links
    http://onlinelibrary.wiley.com/doi/10.1002/smll.201703136/full
    ae974a485f413a2113503eed53cd6c53
    10.1002/smll.201703136
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.