Show simple item record

dc.contributor.authorBahabry, Rabab R.
dc.contributor.authorKutbee, Arwa T.
dc.contributor.authorKhan, Sherjeel M.
dc.contributor.authorSepulveda, Adrian C.
dc.contributor.authorWicaksono, Irmandy
dc.contributor.authorNour, Maha A.
dc.contributor.authorWehbe, Nimer
dc.contributor.authorAlmislem, Amani Saleh Saad
dc.contributor.authorGhoneim, Mohamed T.
dc.contributor.authorSevilla, Galo T.
dc.contributor.authorSyed, Ahad
dc.contributor.authorShaikh, Sohail F.
dc.contributor.authorHussain, Muhammad Mustafa
dc.date.accessioned2018-01-28T07:22:28Z
dc.date.available2018-01-28T07:22:28Z
dc.date.issued2018-01-02
dc.identifier.citationBahabry RR, Kutbee AT, Khan SM, Sepulveda AC, Wicaksono I, et al. (2018) Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell. Advanced Energy Materials: 1702221. Available: http://dx.doi.org/10.1002/aenm.201702221.
dc.identifier.issn1614-6832
dc.identifier.doi10.1002/aenm.201702221
dc.identifier.urihttp://hdl.handle.net/10754/626892
dc.description.abstractAdvanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.
dc.publisherWiley-Blackwell
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/aenm.201702221/full
dc.rightsThis is the peer reviewed version of the following article: Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell, which has been published in final form at http://doi.org/10.1002/aenm.201702221. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
dc.subjectC-Si solar cells
dc.subjectCMOS devices
dc.subjectFlexible PV
dc.subjectHigh efficiency
dc.subjectLarge-scale photovoltaics
dc.titleCorrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell
dc.typeArticle
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentMaterials Science and Engineering Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentIntegrated Disruptive Electronic Applications (IDEA) Lab
dc.contributor.departmentIntegrated Nanotechnology Lab
dc.contributor.departmentImaging and Characterization Core Lab
dc.contributor.departmentAdvanced Nanofabrication and Thin Film Core Lab
dc.identifier.journalAdvanced Energy Materials
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Electrical Engineering and Information Technology; Swiss Federal Institute of Technology (ETH) Zurich; Rämistrasse 101 Zürich 8092 Switzerland
kaust.personBahabry, Rabab R.
kaust.personKutbee, Arwa T.
kaust.personKhan, Sherjeel M.
kaust.personSepulveda, Adrian C.
kaust.personNour, Maha A.
kaust.personWehbe, Nimer
kaust.personAlmislem, Amani Saleh Saad
kaust.personGhoneim, Mohamed T.
kaust.personSevilla, Galo T.
kaust.personSyed, Ahad
kaust.personShaikh, Sohail F.
kaust.personHussain, Muhammad Mustafa


Files in this item

Thumbnail
Name:
aenm201702221-revised version.pdf
Size:
3.666Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record