• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Perspective: Acoustic metamaterials in transition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1.5007682.pdf
    Size:
    1.039Mb
    Format:
    PDF
    Description:
    Published version
    Download
    Type
    Article
    Authors
    Wu, Ying cc
    Yang, Min
    Sheng, Ping
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Applied Mathematics and Computational Science Program
    KAUST Grant Number
    BAS/1/1626-01-01
    Date
    2017-12-15
    Online Publication Date
    2017-12-15
    Print Publication Date
    2018-03-07
    Permanent link to this record
    http://hdl.handle.net/10754/626878
    
    Metadata
    Show full item record
    Abstract
    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric acoustics that can achieve unprecedented functionalities. These emergent directions portend the transitioning of the field from the stage of novelty demonstrations to imminent applications of some acoustic metamaterials to select real-world problems, supported by an active research endeavor that continues to push the boundary of possibilities.
    Citation
    Wu Y, Yang M, Sheng P (2018) Perspective: Acoustic metamaterials in transition. Journal of Applied Physics 123: 090901. Available: http://dx.doi.org/10.1063/1.5007682.
    Sponsors
    Y.W. wishes to acknowledge funding support from King Abdullah University of Science and Technology BAS/1/1626-01-01. P.S. wishes to acknowledge funding support from Hong Kong Government Grant Nos. AoE/P-02/12 and ITF UIM292.
    Publisher
    AIP Publishing
    Journal
    Journal of Applied Physics
    DOI
    10.1063/1.5007682
    Additional Links
    http://aip.scitation.org/doi/10.1063/1.5007682
    ae974a485f413a2113503eed53cd6c53
    10.1063/1.5007682
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.