Show simple item record

dc.contributor.authorLuong, Thang
dc.contributor.authorCastro, Christopher
dc.contributor.authorNguyen, Truong
dc.contributor.authorCassell, William
dc.contributor.authorChang, Hsin-I
dc.date.accessioned2018-01-28T07:01:37Z
dc.date.available2018-01-28T07:01:37Z
dc.date.issued2018-01-19
dc.identifier.citationLuong T, Castro C, Nguyen T, Cassell W, Chang H-I (2018) Improvement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme. Atmosphere 9: 31. Available: http://dx.doi.org/10.3390/atmos9010031.
dc.identifier.issn2073-4433
dc.identifier.doi10.3390/atmos9010031
dc.identifier.urihttp://hdl.handle.net/10754/626866
dc.description.abstractA commonly noted problem in the simulation of warm season convection in the North American monsoon region has been the inability of atmospheric models at the meso-β scales (10 s to 100 s of kilometers) to simulate organized convection, principally mesoscale convective systems. With the use of convective parameterization, high precipitation biases in model simulations are typically observed over the peaks of mountain ranges. To address this issue, the Kain–Fritsch (KF) cumulus parameterization scheme has been modified with new diagnostic equations to compute the updraft velocity, the convective available potential energy closure assumption, and the convective trigger function. The scheme has been adapted for use in the Weather Research and Forecasting (WRF). A numerical weather prediction-type simulation is conducted for the North American Monsoon Experiment Intensive Observing Period 2 and a regional climate simulation is performed, by dynamically downscaling. In both of these applications, there are notable improvements in the WRF model-simulated precipitation due to the better representation of organized, propagating convection. The use of the modified KF scheme for atmospheric model simulations may provide a more computationally economical alternative to improve the representation of organized convection, as compared to convective-permitting simulations at the kilometer scale or a super-parameterization approach.
dc.description.sponsorshipThis work was principally supported by the US Department of Energy Award Number DE-SC0001172 grant. Additional support from the Strategic Environmental Research and Development Program (SERDP, project RC-2205) through the U.S. Departments of Defense and Energy and U.S. Environmental Protection Agency. We thank two anonymous reviewers for their comments which improved the quality of the manuscript.
dc.publisherMDPI AG
dc.relation.urlhttp://www.mdpi.com/2073-4433/9/1/31
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectNorth American monsoon
dc.subjectconvective parameterization scheme
dc.subjectregional climate modeling
dc.titleImprovement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAtmosphere
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
dc.contributor.institutionDepartment of Meteorology, Hanoi University of Science, Hanoi 10000, Vietnam
kaust.personLuong, Thang
refterms.dateFOA2018-06-14T05:37:35Z


Files in this item

Thumbnail
Name:
atmosphere-09-00031.pdf
Size:
9.239Mb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Except where otherwise noted, this item's license is described as This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).