Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks
Type
ArticleAuthors
Feng, LiangYuan, Shuai
Zhang, Liang-Liang
Tan, Kui
Li, Jia-Luo
Kirchon, Angelo
Liu, Lingmei
Zhang, Peng
Han, Yu

Chabal, Yves J.
Zhou, Hong-Cai
KAUST Department
Advanced Membranes and Porous Materials Research CenterChemical Science Program
Nanostructured Functional Materials (NFM) laboratory
Physical Science and Engineering (PSE) Division
Date
2018-01-30Online Publication Date
2018-01-30Print Publication Date
2018-02-14Permanent link to this record
http://hdl.handle.net/10754/626852
Metadata
Show full item recordAbstract
Sufficient pore size, appropriate stability and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization and catalysis involving large molecules. Herein, we report a powerful and general strate-gy, linker thermolysis, to construct ultra-stable hierarchically porous metal−organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxyla-tion process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultra-small metal oxide (MO) nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid catalyzed reactions. Most importantly, this work pro-vides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on prob-ing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.Citation
Feng L, Yuan S, Zhang L-L, Tan K, Li J-L, et al. (2018) Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks. Journal of the American Chemical Society. Available: http://dx.doi.org/10.1021/jacs.7b12916.Sponsors
The gas adsorption-desorption studies of this research were supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001015. The PXRD, TGA-MS and TEM characterization and analysis were funded by the Robert A. Welch Foundation through a Welch Endowed Chair to HJZ (A-0030). The spectroscopic characterization and analysis (IR and XPS) were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-08ER46491. The catalysis work was funded by the Qatar National Research Fund under Award Number NPRP9-377-1-080. The authors also acknowledge the financial supports of U.S. Department of Energy Office of Fossil Energy, National Energy Technology Laboratory (DE-FE0026472).Publisher
American Chemical Society (ACS)PubMed ID
29345141Additional Links
http://pubs.acs.org/doi/10.1021/jacs.7b12916ae974a485f413a2113503eed53cd6c53
10.1021/jacs.7b12916
Scopus Count
Related articles
- Construction of hierarchically porous metal-organic frameworks through linker labilization.
- Authors: Yuan S, Zou L, Qin JS, Li J, Huang L, Feng L, Wang X, Bosch M, Alsalme A, Cagin T, Zhou HC
- Issue date: 2017 May 25
- Rapid Generation of Hierarchically Porous Metal-Organic Frameworks through Laser Photolysis.
- Authors: Wang KY, Feng L, Yan TH, Wu S, Joseph EA, Zhou HC
- Issue date: 2020 Jul 6
- Stepwise Synthesis of Metal-Organic Frameworks.
- Authors: Bosch M, Yuan S, Rutledge W, Zhou HC
- Issue date: 2017 Apr 18
- Generation of Hierarchical Porosity in Metal-Organic Frameworks by the Modulation of Cation Valence.
- Authors: Qi SC, Qian XY, He QX, Miao KJ, Jiang Y, Tan P, Liu XQ, Sun LB
- Issue date: 2019 Jul 22
- Hierarchically porous metal-organic frameworks: synthetic strategies and applications.
- Authors: Feng L, Wang KY, Lv XL, Yan TH, Zhou HC
- Issue date: 2020 Nov