Show simple item record

dc.contributor.authorAkujuobi, Uchenna Thankgod
dc.contributor.authorZhang, Xiangliang
dc.date.accessioned2018-01-11T07:29:54Z
dc.date.available2018-01-11T07:29:54Z
dc.date.issued2017-12-30
dc.identifier.citationAkujuobi U, Zhang X (2017) Delve: A Data Set Retrieval and Document Analysis System. Lecture Notes in Computer Science: 400–403. Available: http://dx.doi.org/10.1007/978-3-319-71273-4_39.
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.doi10.1007/978-3-319-71273-4_39
dc.identifier.urihttp://hdl.handle.net/10754/626737
dc.description.abstractAcademic search engines (e.g., Google scholar or Microsoft academic) provide a medium for retrieving various information on scholarly documents. However, most of these popular scholarly search engines overlook the area of data set retrieval, which should provide information on relevant data sets used for academic research. Due to the increasing volume of publications, it has become a challenging task to locate suitable data sets on a particular research area for benchmarking or evaluations. We propose Delve, a web-based system for data set retrieval and document analysis. This system is different from other scholarly search engines as it provides a medium for both data set retrieval and real time visual exploration and analysis of data sets and documents.
dc.publisherSpringer Nature
dc.relation.urlhttps://link.springer.com/chapter/10.1007%2F978-3-319-71273-4_39
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-71273-4_39
dc.titleDelve: A Data Set Retrieval and Document Analysis System
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentComputer Science Program
dc.identifier.journalMachine Learning and Knowledge Discovery in Databases
dc.conference.dateSeptember 18–22, 2017
dc.conference.nameMachine Learning and Knowledge Discovery in Databases
dc.conference.locationSkopje, Macedonia
dc.eprint.versionPost-print
kaust.personAkujuobi, Uchenna Thankgod
kaust.personZhang, Xiangliang
refterms.dateFOA2018-12-30T00:00:00Z
dc.date.published-online2017-12-30
dc.date.published-print2017


Files in this item

Thumbnail
Name:
Delve.pdf
Size:
3.483Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record