• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Mughal, Asad J. cc
    Young, Erin C.
    Alhassan, Abdullah I.
    Back, Joonho
    Nakamura, Shuji
    Speck, James S.
    DenBaars, Steven P.
    Date
    2017-11-27
    Online Publication Date
    2017-11-27
    Print Publication Date
    2017-12-01
    Permanent link to this record
    http://hdl.handle.net/10754/626722
    
    Metadata
    Show full item record
    Abstract
    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal–organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p–n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm−3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10−3–3.4 × 10−3 Ωcenterdotcm2, and the turn-on voltages of the diodes.
    Citation
    Mughal AJ, Young EC, Alhassan AI, Back J, Nakamura S, et al. (2017) Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p–n diodes and InGaN LEDs. Applied Physics Express 10: 121006. Available: http://dx.doi.org/10.7567/apex.10.121006.
    Sponsors
    This work was funded in part by the Solid State Lighting Program (SSLP), a collaboration between King Abdulaziz City for Science and Technology (KACST), King Abdullah University of Science and Technology (KAUST), and University of California, Santa Barbara (UCSB). The work was also funded in part through the Solid State Lighting and Energy Electronics Center (SSLEEC) at UCSB. A portion of this work was carried out in the UCSB nanofabrication facility, with support from the NSF NNIN network (ECS-03357650), as well as the UCSB Materials Research Laboratory (MRL), which is supported by the NSF MRSEC program (DMR-1121053).
    Publisher
    IOP Publishing
    Journal
    Applied Physics Express
    DOI
    10.7567/apex.10.121006
    ae974a485f413a2113503eed53cd6c53
    10.7567/apex.10.121006
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.