Show simple item record

dc.contributor.authorPablo-Pedro, Ricardo
dc.contributor.authorLopez-Rios, Hector
dc.contributor.authorMendoza-Cortes, Jose-L.
dc.contributor.authorKong, Jing
dc.contributor.authorFomine, Serguei
dc.contributor.authorVan Voorhis, Troy
dc.contributor.authorDresselhaus, Mildred S.
dc.date.accessioned2018-01-04T07:51:40Z
dc.date.available2018-01-04T07:51:40Z
dc.date.issued2018-05-09
dc.identifier.citationPablo-Pedro, R., Lopez-Rios, H., Mendoza-Cortes, J.-L., Kong, J., Fomine, S., Van Voorhis, T., & Dresselhaus, M. S. (2018). Exploring Low Internal Reorganization Energies for Silicene Nanoclusters. Physical Review Applied, 9(5). doi:10.1103/physrevapplied.9.054012
dc.identifier.doi10.1103/physrevapplied.9.054012
dc.identifier.urihttp://hdl.handle.net/10754/626700
dc.description.abstractThis paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus.High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n-type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the
dc.description.sponsorshipR. P.-P. is grateful to Roberto Olivares-Amaya for the discussion on reorganization energy in organic systems. M. D., J. K., and R. P.-P. acknowledge the King Abdullah University of Science and Technology for support under Contract (No. OSR-2015-CRG4-2634). H. L.-R. and S. F.acknowledge financial support from CONACyT (GrantNo. 251684). J.-L. M.-C. start-up funds from Florida StateUniversity and the Energy and Material Initiative andfacilities at the High Performance Material Institute.A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported byNational Science Foundation Cooperative AgreementNo. DMR-1644779* and the State of Florida
dc.publisherAmerican Physical Society (APS)
dc.relation.urlhttps://link.aps.org/doi/10.1103/PhysRevApplied.9.054012
dc.rightsArchived with thanks to Physical Review Applied
dc.titleExploring Low Internal Reorganization Energies for Silicene Nanoclusters
dc.typeArticle
dc.identifier.journalPhysical Review Applied
dc.eprint.versionPre-print
dc.contributor.institutionDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States
dc.contributor.institutionInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, CU, Coyoacán, Ciudad de México, 04510, Mexico
dc.contributor.institutionDepartment of Chemical and Biomedical Engineering, FAMU-FSU Joint College of Engineering, Tallahassee, FL, 32310, United States
dc.contributor.institutionDepartment of Physics and Department of Scientific Computing, Materials Science and Engineering, High Performance Material Institute, Condensed Matter Theory, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, United States
dc.contributor.institutionDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
dc.contributor.institutionDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
dc.identifier.arxivid1708.05369
kaust.grant.numberOSR- 2015-CRG4-2634


This item appears in the following Collection(s)

Show simple item record