• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wan, Yi cc
    Xiao, Jun
    Li, Jingzhen
    Fang, Xin
    Zhang, Kun
    Fu, Lei
    Li, Pan
    Song, Zhigang
    Zhang, Hui
    Wang, Yilun
    Zhao, Mervin
    Lu, Jing
    Tang, Ning
    Ran, Guangzhao
    Zhang, Xiang cc
    Ye, Yu cc
    Dai, Lun
    KAUST Grant Number
    OSR-2016-CRG5-2996
    Date
    2017-12-19
    Online Publication Date
    2017-12-19
    Print Publication Date
    2018-02
    Permanent link to this record
    http://hdl.handle.net/10754/626699
    
    Metadata
    Show full item record
    Abstract
    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.
    Citation
    Wan Y, Xiao J, Li J, Fang X, Zhang K, et al. (2017) Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity. Advanced Materials: 1703888. Available: http://dx.doi.org/10.1002/adma.201703888.
    Sponsors
    This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0206301), the National Basic Research Program of China (Grant No. 2013CB921901), the National Natural Science Foundation of China (Grant Nos. 61521004, 11474007, and 11674005), the King Abdulah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2016-CRG5-2996, the National Science Foundation (NSF) under grant 1753380, and the “Youth 1000 Talent Plan” Fund. Y.Y. thanks Ting Cao from University of California, Berkeley, for help discussions.
    Publisher
    Wiley
    Journal
    Advanced Materials
    DOI
    10.1002/adma.201703888
    ae974a485f413a2113503eed53cd6c53
    10.1002/adma.201703888
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.