• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Deep learning microscopy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Rivenson, Yair
    Göröcs, Zoltán
    Günaydin, Harun
    Zhang, Yibo cc
    Wang, Hongda cc
    Ozcan, Aydogan cc
    Date
    2017-11-17
    Permanent link to this record
    http://hdl.handle.net/10754/626689
    
    Metadata
    Show full item record
    Abstract
    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field of view and depth of field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with better resolution, matching the performance of higher numerical aperture lenses and also significantly surpassing their limited field of view and depth of field. These results are significant for various fields that use microscopy tools, including, e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, the presented approach might be applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better as they continue to image specimens and establish new transformations among different modes of imaging.
    Citation
    Rivenson, Y., Göröcs, Z., Günaydin, H., Zhang, Y., Wang, H., & Ozcan, A. (2017). Deep learning microscopy. Optica, 4(11), 1437. doi:10.1364/optica.4.001437
    Sponsors
    Presidential Early Career Award for Scientists and Engineers (PECASE); Army Research Office (ARO) (W911NF- 13-1-0419, W911NF-13-1-0197); ARO Life Sciences Division; National Science Foundation (NSF) (0963183); Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) Division Biophotonics Program; Division of Emerging Frontiers in Research and Innovation (EFRI), NSF EAGER Award, NSF INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) Program; Office of Naval Research (ONR); National Institutes of Health (NIH); Howard Hughes Medical Institute (HHMI); Vodafone Foundation; Mary Kay Foundation (TMKF); Steven&Alexandra Cohen Foundation; King Abdullah University of Science and Technology (KAUST); American Recovery and Reinvestment Act of 2009 (ARRA). European Union’s Horizon 2020 Framework Programme (H2020); H2020 Marie Sklodowska- Curie Actions (MSCA) (H2020-MSCA-IF-2014-65959).
    Publisher
    The Optical Society
    Journal
    Optica
    DOI
    10.1364/optica.4.001437
    arXiv
    1705.04709
    Additional Links
    https://www.osapublishing.org/abstract.cfm?URI=optica-4-11-1437
    ae974a485f413a2113503eed53cd6c53
    10.1364/optica.4.001437
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.