• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ballard, Zachary S.
    Shir, Daniel
    Bhardwaj, Aashish
    Bazargan, Sarah
    Sathianathan, Shyama
    Ozcan, Aydogan cc
    Date
    2017-02
    Online Publication Date
    2017-02
    Print Publication Date
    2017-02-28
    Permanent link to this record
    http://hdl.handle.net/10754/626685
    
    Metadata
    Show full item record
    Abstract
    Plasmonic sensors have been used for a wide range of biological and chemical sensing applications. Emerging nanofabrication techniques have enabled these sensors to be cost-effectively mass manufactured onto various types of substrates. To accompany these advances, major improvements in sensor read-out devices must also be achieved to fully realize the broad impact of plasmonic nanosensors. Here, we propose a machine learning framework which can be used to design low-cost and mobile multispectral plasmonic readers that do not use traditionally employed bulky and expensive stabilized light sources or high-resolution spectrometers. By training a feature selection model over a large set of fabricated plasmonic nanosensors, we select the optimal set of illumination light-emitting diodes needed to create a minimum-error refractive index prediction model, which statistically takes into account the varied spectral responses and fabrication-induced variability of a given sensor design. This computational sensing approach was experimentally validated using a modular mobile plasmonic reader. We tested different plasmonic sensors with hexagonal and square periodicity nanohole arrays and revealed that the optimal illumination bands differ from those that are “intuitively” selected based on the spectral features of the sensor, e.g., transmission peaks or valleys. This framework provides a universal tool for the plasmonics community to design low-cost and mobile multispectral readers, helping the translation of nanosensing technologies to various emerging applications such as wearable sensing, personalized medicine, and point-of-care diagnostics. Beyond plasmonics, other types of sensors that operate based on spectral changes can broadly benefit from this approach, including e.g., aptamer-enabled nanoparticle assays and graphene-based sensors, among others.
    Citation
    Ballard ZS, Shir D, Bhardwaj A, Bazargan S, Sathianathan S, et al. (2017) Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning. ACS Nano 11: 2266–2274. Available: http://dx.doi.org/10.1021/acsnano.7b00105.
    Sponsors
    The Ozcan Research Group at UCLA gratefully acknowledges the support of the Presidential Early Career Award for Scientists and Engineers (PECASE), the Army Research Office (ARO; W911NF-13-1-0419 and W911NF-13-1-0197), the ARO Life Sciences Division, the National Science Foundation (NSF) CBET Division Biophotonics Program, the NSF Emerging Frontiers in Research and Innovation (EFRI) Award, the NSF EAGER Award, NSF INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) Program, Office of Naval Research (ONR), the National Institutes of Health (NIH), the Howard Hughes Medical Institute (HHMI), Vodafone Americas Foundation, the Mary Kay Foundation, Steven and Alexandra Cohen Foundation, and KAUST. This work is based upon research performed in a laboratory renovated by the NSF under grant no. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009 (ARRA).
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Nano
    DOI
    10.1021/acsnano.7b00105
    ae974a485f413a2113503eed53cd6c53
    10.1021/acsnano.7b00105
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.