• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Ambient noise tomography across Mount St. Helens using a dense seismic array

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Yadong cc
    Lin, Fan-Chi cc
    Schmandt, Brandon cc
    Farrell, Jamie cc
    KAUST Grant Number
    OCRF-2014-CRG3- 2300
    Date
    2017-06-03
    Online Publication Date
    2017-06-03
    Print Publication Date
    2017-06
    Permanent link to this record
    http://hdl.handle.net/10754/626674
    
    Metadata
    Show full item record
    Abstract
    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an ~10–15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.
    Citation
    Wang Y, Lin F-C, Schmandt B, Farrell J (2017) Ambient noise tomography across Mount St. Helens using a dense seismic array. Journal of Geophysical Research: Solid Earth 122: 4492–4508. Available: http://dx.doi.org/10.1002/2016jb013769.
    Sponsors
    We thank Ivan Koulakov, Yehuda Ben-Zion, and Michael Ritzwoller for their constructive comments, which helped to improve this paper. We thank Jing Li and Gerard Schuster for their discussion on the topography effect on surface wave propagation. All waveform data used in this study can be downloaded from the IRIS Data Management Center. This work was supported by National Science Foundation (NSF) grant CyberSEES-1442665 and the King Abdullah University of Science and Technology (KAUST) under award OCRF-2014-CRG3- 2300. Collection and analysis of the node array data was supported by NSF grants 1445937 (B.S.) and 1520875 (B.S.).
    Publisher
    American Geophysical Union (AGU)
    Journal
    Journal of Geophysical Research: Solid Earth
    DOI
    10.1002/2016jb013769
    ae974a485f413a2113503eed53cd6c53
    10.1002/2016jb013769
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.