Show simple item record

dc.contributor.authorNurbekyan, Levon
dc.date.accessioned2017-12-28T07:32:15Z
dc.date.available2017-12-28T07:32:15Z
dc.date.issued2017-03-11
dc.identifier.urihttp://hdl.handle.net/10754/626533
dc.description.abstractHere, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.
dc.publisherarXiv
dc.relation.urlhttp://arxiv.org/abs/1703.03954v1
dc.relation.urlhttp://arxiv.org/pdf/1703.03954v1
dc.rightsArchived with thanks to arXiv
dc.titleOne-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach
dc.typePreprint
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.eprint.versionPre-print
dc.identifier.arxividarXiv:1703.03954
kaust.personNurbekyan, Levon
dc.versionv1
refterms.dateFOA2018-06-14T09:31:54Z


Files in this item

Thumbnail
Name:
1703.03954v1.pdf
Size:
780.6Kb
Format:
PDF
Description:
Preprint

This item appears in the following Collection(s)

Show simple item record