• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    ISTA-Net: Iterative Shrinkage-Thresholding Algorithm Inspired Deep Network for Image Compressive Sensing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1706.07929v1.pdf
    Size:
    1.374Mb
    Format:
    PDF
    Description:
    Preprint
    Download
    Type
    Preprint
    Authors
    Zhang, Jian
    Ghanem, Bernard cc
    KAUST Department
    Visual Computing Center (VCC)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Date
    2017-06-24
    Permanent link to this record
    http://hdl.handle.net/10754/626505
    
    Metadata
    Show full item record
    Summary

    This record has been merged with an existing record at: http://hdl.handle.net/10754/656532.

    Abstract
    Traditional methods for image compressive sensing (CS) reconstruction solve a well-defined inverse problem that is based on a predefined CS model, which defines the underlying structure of the problem and is generally solved by employing convergent iterative solvers. These optimization-based CS methods face the challenge of choosing optimal transforms and tuning parameters in their solvers, while also suffering from high computational complexity in most cases. Recently, some deep network based CS algorithms have been proposed to improve CS reconstruction performance, while dramatically reducing time complexity as compared to optimization-based methods. Despite their impressive results, the proposed networks (either with fully-connected or repetitive convolutional layers) lack any structural diversity and they are trained as a black box, void of any insights from the CS domain. In this paper, we combine the merits of both types of CS methods: the structure insights of optimization-based method and the performance/speed of network-based ones. We propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general $l_1$ norm CS reconstruction model. ISTA-Net essentially implements a truncated form of ISTA, where all ISTA-Net parameters are learned end-to-end to minimize a reconstruction error in training. Borrowing more insights from the optimization realm, we propose an accelerated version of ISTA-Net, dubbed FISTA-Net, which is inspired by the fast iterative shrinkage-thresholding algorithm (FISTA). Interestingly, this acceleration naturally leads to skip connections in the underlying network design. Extensive CS experiments demonstrate that the proposed ISTA-Net and FISTA-Net outperform existing optimization-based and network-based CS methods by large margins, while maintaining a fast runtime.
    Publisher
    arXiv
    arXiv
    1706.07929
    Additional Links
    http://arxiv.org/abs/1706.07929v1
    http://arxiv.org/pdf/1706.07929v1
    Collections
    Preprints; Preprints; Electrical Engineering Program; Visual Computing Center (VCC); Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.