• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Global Convergence of Arbitrary-Block Gradient Methods for Generalized Polyak-{\L} ojasiewicz Functions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1709.03014v1.pdf
    Size:
    688.9Kb
    Format:
    PDF
    Description:
    Preprint
    Download
    Type
    Preprint
    Authors
    Csiba, Dominik
    Richtarik, Peter cc
    KAUST Department
    Computer Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2017-09-09
    Permanent link to this record
    http://hdl.handle.net/10754/626499
    
    Metadata
    Show full item record
    Abstract
    In this paper we introduce two novel generalizations of the theory for gradient descent type methods in the proximal setting. First, we introduce the proportion function, which we further use to analyze all known (and many new) block-selection rules for block coordinate descent methods under a single framework. This framework includes randomized methods with uniform, non-uniform or even adaptive sampling strategies, as well as deterministic methods with batch, greedy or cyclic selection rules. Second, the theory of strongly-convex optimization was recently generalized to a specific class of non-convex functions satisfying the so-called Polyak-{\L}ojasiewicz condition. To mirror this generalization in the weakly convex case, we introduce the Weak Polyak-{\L}ojasiewicz condition, using which we give global convergence guarantees for a class of non-convex functions previously not considered in theory. Additionally, we establish (necessarily somewhat weaker) convergence guarantees for an even larger class of non-convex functions satisfying a certain smoothness assumption only. By combining the two abovementioned generalizations we recover the state-of-the-art convergence guarantees for a large class of previously known methods and setups as special cases of our general framework. Moreover, our frameworks allows for the derivation of new guarantees for many new combinations of methods and setups, as well as a large class of novel non-convex objectives. The flexibility of our approach offers a lot of potential for future research, as a new block selection procedure will have a convergence guarantee for all objectives considered in our framework, while a new objective analyzed under our approach will have a whole fleet of block selection rules with convergence guarantees readily available.
    Publisher
    arXiv
    arXiv
    1709.03014
    Additional Links
    http://arxiv.org/abs/1709.03014v1
    http://arxiv.org/pdf/1709.03014v1
    Collections
    Preprints; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.