Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
KAUST Grant Number
ORS#2221OSR-2016-KKI-2899
Date
2018-01-08Preprint Posting Date
2016-12-19Online Publication Date
2018-01-08Print Publication Date
2018-06Permanent link to this record
http://hdl.handle.net/10754/626475
Metadata
Show full item recordAbstract
The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to wind and atmospheric conditions, outdoor millimeter wave antenna elements are subject to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. Handheld devices are also subject to blockages from random finger placement and/or finger prints. These blockages cause absorption and scattering to the signal incident on the array, modify the array geometry, and distort the far-field radiation pattern of the array. This paper studies the effects of blockages on the far-field radiation pattern of linear arrays and proposes several array diagnosis techniques for millimeter wave antenna arrays. The proposed techniques jointly estimate the locations of the blocked antennas and the induced attenuation and phase-shifts given knowledge of the angles of arrival/departure. Numerical results show that the proposed techniques provide satisfactory results in terms of fault detection with reduced number of measurements (diagnosis time) provided that the number of blockages is small compared to the array size.Citation
Eltayeb ME, Al-Naffouri TY, Heath RW (2018) Compressive Sensing for Millimeter Wave Antenna Array Diagnosis. IEEE Transactions on Communications: 1–1. Available: http://dx.doi.org/10.1109/TCOMM.2018.2790403.Sponsors
This research was partially supported by the U.S. Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center and by the Texas Department of Transportation under Project 0-6877 entitled Communications and Radar-Supported Transportation Operations and Planning (CAR-STOP). The work of Tareq Y. Al-Naffouri is funded by a CRG3 grant ORS#2221 and Award No. OSR-2016-KKI-2899 from the Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST), Saudi Arabia.arXiv
1612.06345Additional Links
http://arxiv.org/abs/1612.06345v4http://arxiv.org/pdf/1612.06345v4
http://ieeexplore.ieee.org/document/8248776/
ae974a485f413a2113503eed53cd6c53
10.1109/TCOMM.2018.2790403
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Guest Editorial Antenna-in-Package, Antenna-on-Chip, Antenna-IC Interface: Joint Design and CointegrationHong, Wonbin; Maaskant, Rob; Liu, Duixian; Wang, Hua; Shamim, Atif; Smolders, Bart; Manteuffel, DIrk; Zhang, Yueping (IEEE Antennas and Wireless Propagation Letters, Institute of Electrical and Electronics Engineers (IEEE), 2019-11-05) [Article]The twenty peer-reviewed letters in this special section examine the design and cointegration of antenna-in-package (AiP), antenna-on-chip (AoC), and antenna ICs (AIC). The letters are categorized in the four distinctive categories: 1) Fabrication technologies (four); 2) Measurement strategies; 3) Applications; and 4) New design and integration strategies. Fruition of major thrusts such as 5G/6G, high-resolution radar and imaging, autonomous driving, and space technology are highly intertwined with the advance of applied electromagnetics. Miniaturization and seamless integration of microwave components and radio systems can enable superior performance, form factor, and cost efficiencies leading to enhanced proliferation of such applications. Historically, radio frequency front ends, antennas, and microwave components have separately evolved using distinct fabrication and measurement technologies.
-
Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platformsHussain, Rifaqat; Sharawi, Mohammad S. (IET Microwaves, Antennas & Propagation, Institution of Engineering and Technology (IET), 2015-06-18) [Article]© The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm$^{2}$. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.
-
Antenna subset selection at multi-antenna relay with adaptive modulationChoi, Seyeong; Hasna, Mazen Omar; Yang, Hongchuan; Alouini, Mohamed-Slim (Wireless Communications and Mobile Computing, Wiley, 2011-06-01) [Article]In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.