Bayesian Parameter Estimation via Filtering and Functional Approximations
dc.contributor.author | Matthies, Hermann G. | |
dc.contributor.author | Litvinenko, Alexander | |
dc.contributor.author | Rosic, Bojana V. | |
dc.contributor.author | Zander, Elmar | |
dc.date.accessioned | 2017-12-28T07:32:11Z | |
dc.date.available | 2017-12-28T07:32:11Z | |
dc.date.issued | 2016-11-25 | |
dc.identifier.uri | http://hdl.handle.net/10754/626468 | |
dc.description.abstract | The inverse problem of determining parameters in a model by comparing some output of the model with observations is addressed. This is a description for what hat to be done to use the Gauss-Markov-Kalman filter for the Bayesian estimation and updating of parameters in a computational model. This is a filter acting on random variables, and while its Monte Carlo variant --- the Ensemble Kalman Filter (EnKF) --- is fairly straightforward, we subsequently only sketch its implementation with the help of functional representations. | |
dc.publisher | arXiv | |
dc.relation.url | http://arxiv.org/abs/1611.09293v1 | |
dc.relation.url | http://arxiv.org/pdf/1611.09293v1 | |
dc.rights | Archived with thanks to arXiv | |
dc.title | Bayesian Parameter Estimation via Filtering and Functional Approximations | |
dc.type | Preprint | |
dc.contributor.department | Extreme Computing Research Center | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.eprint.version | Pre-print | |
dc.contributor.institution | Institute of Scientific Computing Technische Universität Braunschweig, Germany | |
dc.identifier.arxivid | 1611.09293 | |
kaust.person | Litvinenko, Alexander | |
dc.version | v1 | |
refterms.dateFOA | 2018-06-14T03:36:33Z |