Show simple item record

dc.contributor.authorMustapha, K. A.
dc.contributor.authorFurati, K. M.
dc.contributor.authorKnio, Omar
dc.contributor.authorLe Maître, O. P.
dc.date.accessioned2021-02-24T06:28:59Z
dc.date.available2017-12-28T07:32:10Z
dc.date.available2021-02-24T06:28:59Z
dc.date.issued2020-05-29
dc.identifier.citationMustapha, K. A., Furati, K. M., Knio, O. M., & Le Maître, O. P. (2020). A Finite Difference Method for Space Fractional Differential Equations with Variable Diffusivity Coefficient. Communications on Applied Mathematics and Computation, 2(4), 671–688. doi:10.1007/s42967-020-00066-6
dc.identifier.issn2096-6385
dc.identifier.issn2661-8893
dc.identifier.doi10.1007/s42967-020-00066-6
dc.identifier.urihttp://hdl.handle.net/10754/626452
dc.description.abstractAnomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving variable-coefficient one-dimensional (steady state) fractional differential equations (DEs) with two-sided fractional derivatives (FDs). The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided FD when the right-sided FD is approximated by two consecutive applications of the first-order backward Euler method. Our scheme reduces to the standard second-order central difference in the absence of FDs. The existence and uniqueness of the numerical solution are proved, and truncation errors of order h are demonstrated (h denotes the maximum space step size). The numerical tests illustrate the global O(h) accuracy, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/10.1007/s42967-020-00066-6
dc.relation.urlhttp://arxiv.org/pdf/1706.00971
dc.rightsArchived with thanks to Communications on Applied Mathematics and Computation
dc.subjectTwo-sided fractional derivatives
dc.subjectVariable coefcients
dc.subjectFinite diferences
dc.titleA Finite Difference Method for Space Fractional Differential Equations with Variable Diffusivity Coefficient
dc.typeArticle
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalCommunications on Applied Mathematics and Computation
dc.eprint.versionPre-print
dc.contributor.institutionDepartment of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Kingdom of Saudi Arabia
dc.contributor.institutionCNRS, LIMSI, Université Paris-Saclay, Campus Universitaire - BP 133, 91403, Orsay, France
dc.identifier.volume2
dc.identifier.issue4
dc.identifier.pages671-688
dc.identifier.arxivid1706.00971
kaust.personKnio, Omar
kaust.grant.numberKAUST005
dc.date.accepted2020-03-14
refterms.dateFOA2018-06-13T11:10:33Z


Files in this item

Thumbnail
Name:
1706.00971v1.pdf
Size:
255.4Kb
Format:
PDF
Description:
Post-print

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version