Show simple item record

dc.contributor.advisorSaikaly, Pascal
dc.contributor.authorWang, Zhongwei
dc.date.accessioned2017-12-10T11:49:11Z
dc.date.available2018-12-07T00:00:00Z
dc.date.issued2017-12
dc.identifier.citationWang, Z. (2017). Aerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology. KAUST Research Repository. https://doi.org/10.25781/KAUST-5GBMX
dc.identifier.doi10.25781/KAUST-5GBMX
dc.identifier.urihttp://hdl.handle.net/10754/626336
dc.description.abstractAerobic granular sludge (AGS) technology is a next-generation technology for the biological treatment of wastewater. The advantages of AGS in terms of small footprint, low operation and capital cost and high effluent quality makes it a strong candidate for replacing conventional biological wastewater treatment based on activated sludge (CAS) process, and potentially become the standard for biological wastewater treatment in the future. Saline wastewater is generated from many industrial processes as well as from the use of sea water as a secondary quality water for non-potable use such as toilet flushing to mitigate shortage of fresh water in some coastal cities. Salt is known to inhibit biological wastewater treatment processes in terms of organic and nutrient removal. In the first part of my dissertation, I conducted three lab-scale experiments to 1) evaluate the effect of salt on granulation and nutrient removal in AGS (330 days); 2) develop engineering strategies to mitigate the adverse effect of salt on nutrient removal of AGS (164 days); and 3) compare the effect of salt on the stoichiometry and kinetics of different phosphate accumulating organisms (PAO) clades (PAOI and PAOII) and to determine the effect of potassium and sodium ions on the activities of different PAO clades (225 days). Like other artificial microbial ecosystems (e.g. CAS plant and anaerobic digester), a firm understanding of the microbial ecology of AGS system is essential for process design and optimization. The second part of my dissertation reported the first microbial ecology study of a full-scale AGS plant with the aim of addressing the role of regional (i.e. immigration) versus local factors in shaping the microbial community assembly of different-sized microbial aggregates in AGS. The microbial communities in a full-scale AGS plant in Garmerwolde, The Netherlands, was characterized periodically over 180 days using Illumina sequencing of 16S ribosomal RNA amplicons of the V3-V4 regions. Overall, the discovery of this PhD study sheds light on the application of AGS for the treatment of saline wastewater and deepens our understanding on the microbial ecology of AGS systems, which is essential for process design and optimization.
dc.language.isoen
dc.subjectAerobic granule sludge
dc.subjectsalt effect
dc.subjectmicrobial ecology
dc.subjectnutrient removal
dc.subjectPhosphate accumulating organisms
dc.titleAerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology
dc.typeDissertation
dc.contributor.departmentBiological and Environmental Science and Engineering (BESE) Division
dc.rights.embargodate2018-12-07
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberHong, Pei-Ying
dc.contributor.committeememberMoran, Xose Anxelu G.
dc.contributor.committeemembervan Loosdrecht, Mark C.M.
thesis.degree.disciplineEnvironmental Science and Engineering
thesis.degree.nameDoctor of Philosophy
dc.rights.accessrightsAt the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2018-12-07.
refterms.dateFOA2018-12-07T00:00:00Z


Files in this item

Thumbnail
Name:
Zhongwei Wang Dissertation.pdf
Size:
4.475Mb
Format:
PDF
Description:
Zhongwei Wang Dissertation

This item appears in the following Collection(s)

Show simple item record